Skip to main content
Log in

Effect of Tantalum ion doping on the structure and electrical properties of Bi3Ti1.5W0.5O9-Bi4Ti3O12 intergrowth bismuth-layered ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi7Ti4.5-xTaxW0.5O21 (BTW-BIT-xTa, x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.30) intergrowth bismuth-layered ceramics were fabricated by traditional solid-phase method. The effects of Ta5+ ion doping on the structure and morphology of BTW-BIT ceramics were investigated by measuring XRD and SEM Photos. It indicated that octahedral distortion was increased with the introduction of Ta5+ ion, giving rise to enhancing Curie temperature and ranging from 689 °C to 721 °C. By means of analysis of the dielectric, impedance and ferroelectric, it was concluded that oxygen vacancies of samples were reduced due to donor ion Ta5+ substituted for ion Ti4+ at B-site. The decreased oxygen vacancies lessened the dielectric loss, improved the insulating properties of the samples, and made the electrical performances better. BTW-BIT-0.10Ta had the optimal electrical performances with a high d33 of 15.3 pC/N (more than twice that of BTW-BIT ceramic), a high Curie temperature Tc of 705 °C and a good thermal stability, indicating a potential application in the high-temperature field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.J. Zhang, X.N. Jiang, M. Lapsley, P. Moses, T.R. Shrout, Piezoelectric accelerometers for ultrahigh temperature application. Appl. Phys. Lett. 96, 013506 (2010)

    Article  CAS  Google Scholar 

  2. S.J. Zhang, F.P. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

    Article  CAS  Google Scholar 

  3. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Optically programmable electron spin memory using semi-conductor quantum dots. Nature 432, 81–84 (2004)

    Article  CAS  Google Scholar 

  4. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)

    Article  CAS  Google Scholar 

  5. P.K. Panda, Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009)

    Article  CAS  Google Scholar 

  6. A. Moure, Review and perspectives of Aurivillius structures as a lead-free piezoelectric system. Appl. Sci. 8, 62 (2018)

    Article  CAS  Google Scholar 

  7. P. Wang, X. Jiang, C. Chen, X. Xia, Y.L. Jiang, X.H. Li, Y.J. Chen, G. Fan, Electrical and photoluminescence properties of Sm3+ doped Na0.5La0.5Bi8-xSmxTi7O27 ceramics. Ceram. Int. 44(2), 1448–1454 (2018)

    Article  CAS  Google Scholar 

  8. X. Xing, F. Cao, Z. Peng, X. Yang, Electrical properties and sintering characteristics of zirconium doped CaBi2Nb2O9 ceramics. Ceram. Int. 44(14), 17326–17332 (2018)

    Article  CAS  Google Scholar 

  9. C.B. Long, H.Q. Fan, W. Ren, J.Y. Zhao, Double polarization hysteresis and dramatic influence of small compositional variations on the electrical properties in Bi4Ti3O12 ceramics. J. Eur. Ceram. Soc. 39, 4103–4112 (2019)

    Article  CAS  Google Scholar 

  10. Z.Y. Zhou, Y.C. Li, S.P. Hui, X.L. Dong, Effect of tungsten doping in bismuth-layered Na0.5Bi2.5Nb2O9 high temperature piezoceramics. Appl. Phys. Lett. 104, 012904 (2014)

    Article  CAS  Google Scholar 

  11. H. Chen, F. Fu, J. Zhai, Fabrication and Piezoelectric Property Of highly textured CaBi2Nb2O9 ceramics by tape casting. Jpn. J. Appl. Phys. 50, 050207 (2011)

    Article  CAS  Google Scholar 

  12. X.X. Tian, S.B. Qu, B.K. Wang, W. Zhang, J. Zhao, Grain oriented growth and properties of ultra-high temperature CaBi2Nb2O9 piezoelectric ceramics. Sci. China. Chem. 54, 1552–1557 (2011)

    Article  CAS  Google Scholar 

  13. M. Kimura, H. Ogawa, T. Sawada, K. Shiratsuyu, N. Wada, A. Ando, Piezoelectric properties in textured ceramics of bismuth layer-structured ferroelectrics. J. Electroceram. 21(1–4), 55–60 (2008)

    Article  CAS  Google Scholar 

  14. Y. Goshima, Y. Noguchi, M. Miyayama, Dielectric and ferroelectric anisotropy of intergrowth Bi4Ti3O12–PbBi4Ti4O15 single crystals. Appl. Phys. Lett. 81(12), 2226–2228 (2002)

    Article  CAS  Google Scholar 

  15. Y. Noguchi, M. Miyayama, T. Kudo, Ferroelectric properties of intergrowth Bi4Ti3O12 – SrBi4Ti4O15 ceramics. Appl. Phys. Lett. 77, 3639–3641 (2000)

    Article  CAS  Google Scholar 

  16. T. Kobayashi, Y. Noguchi, M. Miyayama, Enhanced spontaneous polarization in superlattice-structured Bi4Ti3O12–BaBi4Ti4O15 single crystals. Appl. Phys. Lett. 86(1), 627 (2005)

    Article  CAS  Google Scholar 

  17. Z. Peng, D. Yan, Q. Chen, D. Xin, D. Liu, D. Xiao, J. Zhu, Crystal structure, dielectric and piezoelectric properties of Ta/W co-doped Bi3TiNbO9 Aurivillius phase ceramics. Curr. Appl. Phys. 14, 1861–1866 (2014)

    Article  Google Scholar 

  18. J. Yuan, R. Nie, Q. Chen, J. Xing, J.G. Zhu, Evolution of structural distortion and electric properties of BTN-based high-temperature piezoelectric ceramics with tungsten substitution. J. Alloys Compd. 785, 475–483 (2019)

    Article  CAS  Google Scholar 

  19. X. Xie, T. Wang, Z. Zhou, G. Cheng, R. Liang, X. Dong, Enhanced piezoelectric properties and temperature stability of Bi4Ti3O12-based Aurivillius ceramics via W/Nb substitution. J. Eur. Ceram. Soc. 39, 957–962 (2019)

    Article  CAS  Google Scholar 

  20. W. Wang, D. Shan, J.B. Sun, X.Y. Mao, X.B. Chen, Aliovalent B-site modification on three- and four-layer Aurivillius intergrowth. J. Appl. Phys. 103(4), 044102 (2008)

    Article  CAS  Google Scholar 

  21. D.Y. Suárez, I.M. Reaney, W.E. Lee, Relation between tolerance factor and Tc in Aurivillius compounds. J. Mater. Res. 16(11), 3139–3149 (2001)

    Article  Google Scholar 

  22. X. Xie, Z. Zhou, T. Chen, R.H. Liang, X.L. Dong, Enhanced electrical properties of NaBi modified CaBi2Nb2O9-based Aurivillius piezoceramics via structural distortion. Ceram. Int. 45(5), 5425–5430 (2019)

    Article  CAS  Google Scholar 

  23. A. Prasetyo, B. Mihailova, V. Suendo, A.A. Nugroho, Structural transformations in Pb1−xBi4+xTi4−xMnxO15 (x=0.2 and 0.4): a Raman scattering study. J. Raman Spectr. 48(2), 292–297 (2017)

    Article  CAS  Google Scholar 

  24. H. Long, M. Fan, Q.. Li. Li, Effect of lanthanum and tungsten co-substitution on the structure and properties of new Aurivillius oxides Na0.5La0.5Bi2Nb2-xWxO9. Cryst. Eng. Comm. 14(21), 7201–7208 (2012)

    Article  CAS  Google Scholar 

  25. X.P. Jiang, X.A. Jiang, C. Chen, N. Tu, Y.J. Chen, B.C. Zhang, Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics. J. Phys. D App. Phys. 49(12), 125101 (2016)

    Article  CAS  Google Scholar 

  26. J. Liu, G. Zou, Y. Jin, Raman scattering study of Na0.5Bi4.5Ti4O15 and its solid solutions. J. Phys. Chem. Solids. 57(11), 1653–1658 (1996)

    Article  CAS  Google Scholar 

  27. C.W. Shao, Y.Q. Lu, D. Wang, Y.X. Li, Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics. J. Eur. Ceram. Soc. 32(14), 3781–3789 (2012)

    Article  CAS  Google Scholar 

  28. C. Long, Q. Chang, Y. Wu, W. He, Y. Li, H. Fan, New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5-xTi4O15: Crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3(34), 8852–8864 (2015)

    Article  CAS  Google Scholar 

  29. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, Possible relaxation and conduction mechanism in W6+ doped SrBi4Ti4O15 ceramic. Ceram. Int. 43(5), 4527–4535 (2016)

    Article  CAS  Google Scholar 

  30. S. Luo, Y. Noguchi, M. Miyayama, T. Kudo, Rietveld analysis and dielectric properties of Bi2WO6-Bi4Ti3O12 ferroelectric system. Mater. Res. Bull. 36(3–4), 531–540 (2001)

    Article  CAS  Google Scholar 

  31. W. Li, K. Chen, Y. Yao et al., Correlation among oxygen vacancies in bismuth titanate ferroelectric ceramics. Appl. Phys. Lett. 85(20), 4717–4719 (2004)

    Article  CAS  Google Scholar 

  32. T. Jardiel, A.C. Caballero, M. Villegas, Electrical properties in WO3 doped Bi4Ti3O12 materials. J. Eur. Ceram. Soc. 27(13–15), 4115–4119 (2007)

    Article  CAS  Google Scholar 

  33. Z. Peng, Q. Chen, Y. Chen, D. Xiao, J. Zhu, Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi4Ti3O12 piezoelectric ceramics. Mater. Res. Bull. 59, 125–130 (2014)

    Article  CAS  Google Scholar 

  34. Y. Tang, Z.Y. Shen, Q. Du, X. Zhao, F. Wang, X. Qin, T. Wang, W. Shi, D. Sun, Z. Zhou, Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics. J. Eur. Ceram. Soc. 38(16), 5348–5353 (2018)

    Article  CAS  Google Scholar 

  35. M. Takahashi, Y. Noguchi, M. Miyayama, Electrical conduction mechanism in Bi4Ti3O12 single crystal. Jpn. J. Appl. Phys. 41, 7053 (2002)

    Article  CAS  Google Scholar 

  36. Y.J. Jiang, X.P. Jiang, C. Chen, X. Nie, X. Huang, X. Jiang, J. Zhuang, L. Zheng, Z. Chen, Effect of tantalum substitution on the structural and electrical properties of BaBi8Ti7O27 intergrowth ceramics. Ceram. Int. 46(6), 8122–8129 (2020)

    Article  CAS  Google Scholar 

  37. S.K. Rout, S. Parida, E. Sinha, P.K. Barhai, I.W. Kim, Frequency–temperature response of CaBi4Ti4O15, ceramic prepared by soft chemical route: impedance and modulus spectroscopy characterization. Curr. Appl. Phys. 10, 917–922 (2010)

    Article  Google Scholar 

  38. J. Hou, Y. Qu, R. Vaish, D. Krsmanovic, R.V. Kumar, Effect of Sb substitution on the structural and electrical properties of Bi4Ti3−2xNbxTaxO12 ceramics. J. Am. Ceram. Soc. 94(8), 2523–2529 (2011)

    Article  CAS  Google Scholar 

  39. X.H. Xing, F. Cao, Z.H. Peng, Y. Xiang, The effects of oxygen vacancies on the electrical properties of W, Ti doped CaBi2Nb2O9 piezoceramics. Curr. Appl. Phys. 18(10), 1149–1157 (2018)

    Article  Google Scholar 

  40. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, Possible relaxation and conduction mechanism in W6+doped SrBi4Ti4O15 ceramic. Ceram. Int. 43(5), 4527–4535 (2017)

    Article  CAS  Google Scholar 

  41. K. Jonscher, Dielectric relaxation in solids. J. Phys. Appl. Phys. 32(14), R57 (1999)

    Article  CAS  Google Scholar 

  42. K. Jonscher, The ‘universal’dielectric response. Nature 267(5613), 67 (1977)

    Article  Google Scholar 

  43. Q. Tan, D. Viehland, Influence of thermal and electrical histories on domain structure and polarization switching in potassium-modifified lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81(2), 328–336 (1998)

    Article  CAS  Google Scholar 

  44. Q. Tan, J. Li, D. Viehland, Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modifified lead zirconate titanate. Appl. Phys. Lett. 75(3), 418–420 (1999)

    Article  CAS  Google Scholar 

  45. Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, Defect control for large remanent polarization in bismuth titanate ferroelectrics–doping effect of higher-valent cations. Jpn. Jappl. Phys. 39(12B), L1259 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52062018, 51862016, 51762024), Natural Science Foundation of Jiangxi Province (20192BAB20600, 20192BAB212002), the Foundation of Jiangxi Provincial Education Department (GJJ190712, GJJ190699, GJJ201331), Key Laboratory of Inorganic Functional Materials and Devices of Chinese Academy of Sciences (KLIFMD202004) and Jingdezhen Science and Technology Bureau (2019GYZD008-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangping Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Jiang, X., Chen, C. et al. Effect of Tantalum ion doping on the structure and electrical properties of Bi3Ti1.5W0.5O9-Bi4Ti3O12 intergrowth bismuth-layered ceramics. J Mater Sci: Mater Electron 32, 23911–23922 (2021). https://doi.org/10.1007/s10854-021-06849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06849-8

Navigation