Skip to main content
Log in

Influence of co-modification with tungsten and tantalum on the crystal structure and electrical properties of bismuth titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth titanate Bi4Ti3O12 (BIT) based lead-free piezoelectric ceramics with the formula Bi4Ti3-2xWxTaxO12 (abbreviated as BITWT-x, x = 0, 0.015, 0.03, 0.04, 0.045, 0.05) were fabricated by the conventional solid-state sintering method. The effect of W and Ta doping on the crystal structure and electrical properties of BITWT-x ceramics were investigated. BITWT-x ceramics had an orthogonal phase, and crystal structural distortion of W/Ta co-doped BITWT-x based ceramics was higher than that of BITWT-0 ceramics, which improved the ferroelectricity and the piezoelectric property. The ferroelectricity (Pr = 7.78 μC/cm2) of BITWT-0.03 ceramics was better than that (Pr = 0.84 μC/cm2) of BITWT-0 ceramics. The piezoelectric property (d33) was enhanced, and the highest d33 of BITWT-0.04 ceramics was 21.4 pC/N. Moreover, the d33 of the BITWT-x ceramics at 600 °C still kept 80% of its original d33 when the value of x was in the range of 0.03–0.045. Donor ions W6+ and Ta5+ reduced ionic conductivity (oxygen vacancies) and electron conductivity (holes), then increased the resistivity of BITWT-x ceramics (ρ400 °C = 1.82 × 108 Ω cm, x = 0.03). However, the enhanced effect reached a saturated state when x was 0.03. Thus, the BITWT-x ceramics were suitable for the high-temperature application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809 (1954)

    Article  Google Scholar 

  2. T. Bove, W. Wolny, E. Ringgaard, A. Pedersen, J. Eur. Ceram. Soc. 21, 1469 (2001)

    Article  Google Scholar 

  3. S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)

    Article  Google Scholar 

  4. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971)

    Article  Google Scholar 

  5. E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962)

    Article  Google Scholar 

  6. E.C. Subbarao, Phys. Rev. B 122, 804 (1961)

    Article  Google Scholar 

  7. R.L. Withers, J.G. Thompson, A.D. Rae, J. Solid, State Chem. 94, 404 (1991)

    Article  Google Scholar 

  8. Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 78, 1903 (2001)

    Article  Google Scholar 

  9. Y. Kan, P. Wang, T. Xu, G. Zhang, D. Yan, J. Am. Ceram. Soc. 88, 1631 (2005)

    Article  Google Scholar 

  10. T. Takenaka, K. Sakata, Jpn. J. Appl. Phys. 19, 31 (1980)

    Article  Google Scholar 

  11. H.W. Shin, J.Y. Son, J. Mater. Sci.: Mater. Electron. 29, 2573 (2018)

    Google Scholar 

  12. T. Jardiel, A.C. Caballero, M. Villegas, J. Eur. Ceram. Soc. 27, 4115 (2007)

    Article  Google Scholar 

  13. H.S. Shulman, M. Testorf, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 79, 3124 (1996)

    Article  Google Scholar 

  14. J. Hou, R.V. Kumar, Y. Qu, D. Krsmsnovic, Scr Mater. 61, 664 (2009)

    Article  Google Scholar 

  15. J. Hou, R.V. Kumar, Y. Qu, D. Krsmsnovic, J. Am. Ceram. Soc. 94, 2523 (2011)

    Article  Google Scholar 

  16. H. Qi, Y. Qi, M. Xiao, J. Mater. Sci.: Mater. Electron. 25, 1325 (2014)

    Google Scholar 

  17. R. Ti, X. Lu, J. He, F. Huang, J. Mater. Chem. C 3, 11868 (2015)

    Article  Google Scholar 

  18. F. Rehman, L. Wang, H. Jin, A. Bukhtiar, R. Zhang, Y. Zhao, J.B. Li, J. Am. Ceram. Soc. 100, 602 (2017)

    Article  Google Scholar 

  19. R. Bokolia, M. Mondal, V.K. Rai, K. Sreenivas, J. Appl. Phys. 121, 5029 (2017)

    Article  Google Scholar 

  20. X. Du, I.W. Chen, J. Am. Ceram. Soc. 81, 3260 (1998)

    Article  Google Scholar 

  21. D.Y. Suárez, I.M. Reaney, W.E. Lee, J. Mater. Res. 16, 3139 (2001)

    Article  Google Scholar 

  22. R.D. Shannon, Acta. Cryst. A32, 751 (1976)

    Article  Google Scholar 

  23. S. Thathan, I. Mitsuru, J. Mater. Chem. 21, 10865 (2011)

    Article  Google Scholar 

  24. J. Xing, Z. Tan, L. Xie, L. Jiang, J. Yuan, Q. Chen, J. Wu, W. Zhang, D. Xiao, J. Zhu, J. Am. Ceram. Soc. 101, 1632 (2018)

    Article  Google Scholar 

  25. Shrinagar, A. Garg, R. Prasad, S. Auluck, Acta. Cryst. A64, 368 (2008)

    Article  Google Scholar 

  26. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  27. S.E. Cummins, L.E. Cross, J. Appl. Phys. 39, 2268 (1968)

    Article  Google Scholar 

  28. K.J. Min, Y. Kim, J.M. Sohn, S.I. Woo, J. Phys. D Appl. Phys. 37, 2588 (2004)

    Article  Google Scholar 

  29. M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. Funakubo, Jpn. J. Appl. Phys. 40, 5572 (2001)

    Article  Google Scholar 

  30. Y. Yau, R. Palan, K. Tran, R.C. Buchanan, Appl. Phys. Lett. 85, 4714 (2004)

    Article  Google Scholar 

  31. Zhu K., Zhang M. S., Deng Y., J. Zhou, Physica B 405, 1388 (2010)

  32. J. Hou, Y. Qu, R. Vaish, K.B.R. Varma, D. Krsmanovic, R.V. Kumar, J. Am. Ceram. Soc. 93, 1414 (2010)

    Google Scholar 

  33. J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H. Ning, Y.B. Chen, M.H. Lu, B. Yang, J. Chen, S.T. Zhang, X. Xing, J. Rodel, W. Cao, Y.F. Chen, Nat. Commun. 6, 6615 (2015)

    Article  Google Scholar 

  34. H. Yan, H. Zhang, M.J. Reece, X. Dong, Appl. Phys. Lett. 87, 082911 (2005)

    Article  Google Scholar 

  35. Z. Zhou, X. Dong, H. Yan, H. Chen, C. Mao, J. Appl. Phys. 100, 044112 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51332003) and Sichuan Science and Technology Program (2018G20140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, R., Yuan, J. & Zhu, J. Influence of co-modification with tungsten and tantalum on the crystal structure and electrical properties of bismuth titanate ceramics. J Mater Sci: Mater Electron 30, 14445–14455 (2019). https://doi.org/10.1007/s10854-019-01814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01814-y

Keywords

Navigation