Skip to main content
Log in

CTAB-templated formation of CuCo2O4/CuO nanorods and nanosheets for high-performance supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, Copper cobaltites (CuCo2O4) were efficiently developed by the CTAB-assisted sonochemical process succeeded by calcination at 350 °C for 3 h. The differential scanning calorimetric analysis results showed that all the reactions ended at 300 °C. The Fourier transform infrared spectroscopy and X-ray diffraction results established the formation of spinel CuCo2O4/CuO. The morphological analytic results exposed that CuCo2O4 possesses both the nanorods and nanoparticles structure. Furthermore, cyclic voltammetry (CV) and chronopotentiometric (CP) methods were used to evaluate the electrochemical properties of various CuCo2O4 formed. It is observed that the freshly prepared CuCo2O4 electrodes exhibit a very high specific capacitance of 811 Fg−1 at a scan rate of 5 mV s−1 and also demonstrates superior cycling stability retaining 91% of the initial capacitance even after 3000 continuous CV cycles. Hence, typical CuCo2O4 could be considered as an important electrode material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Wang, H. Chai, H. Dong, J. Xu, D. Jia, W. Zhou, superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl. Mater. Interfaces 8(40), 27291–27297 (2016)

    Article  CAS  Google Scholar 

  2. C. Zhang, Q. Chen, H. Zhan, Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 8(35), 22977–22987 (2016)

    Article  CAS  Google Scholar 

  3. S. Hussain, N. Ullah, Y. Zhang, A. Shaheen et al., One-step synthesis of unique catalyst Ni9S8@C for excellent MOR performances. Int. J. Hydrog. Energy. 44, 24525–24533 (2019)

    Article  CAS  Google Scholar 

  4. S. Hussain, X. Yang, M. Kashif Aslam, A. Shaheen et al., Robust TiN nanoparticles polysulfide anchor for Li–S storage and diffusion pathways using first principle calculations. Chem Eng J 391, 123595 (2019)

    Article  Google Scholar 

  5. S. Hussain, M.S. Javed, S. Asim, A. Shaheen, A.J. Khan et al., Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406–6412 (2019)

    Article  Google Scholar 

  6. J. Yesuraj, A.S. Samuel, E. Elaiyappillai, P.M. Johnson, V. Elumalai, M. Bhagavathiachari, A facile sonochemical assisted synthesis of α-MnMoO4/PANI nanocomposite electrode for supercapacitor applications. J. Electroanal. Chem. 797, 78–88 (2017)

    Article  Google Scholar 

  7. J. Yesuraj, S.A. Suthanthiraraj, Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J. Mol. Struct. 1181, 131 (2019)

    Article  CAS  Google Scholar 

  8. M. Kim, I. Oh, H. Ju, J. Kim, Introduction of Co3O4 into activated honeycomb-like carbon for the fabrication of high performance electrode materials for supercapacitors. Phys. Chem. Chem. Phys. 18(13), 9124–9132 (2016)

    Article  CAS  Google Scholar 

  9. X. Zhao et al., Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: Experimental research from hydrothermal crystallization process to electrochemical performances. RSC Adv. 7(64), 40286–40294 (2017)

    Article  CAS  Google Scholar 

  10. S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115(31), 15646–15654 (2011)

    Article  CAS  Google Scholar 

  11. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 5(6), 2188 (2013)

    Article  CAS  Google Scholar 

  12. M.Y. Ho, P.S. Khiew, D. Isa, W.S. Chiu, C.H. Chia, Solvothermal synthesis of molybdenum oxide on liquid-phase exfoliated graphene composite electrodes for aqueous supercapacitor application. J. Mater. Sci. Mater. Electron. 28(9), 6907 (2017)

    Article  CAS  Google Scholar 

  13. Y. Tiana, L. Lina, M. Ninga, S. Hussain, H. Sud et al., Novel binder-free electrode of NiCo2O4@NiMn2O4 core-shell arrays modified carbon fabric for enhanced electrochemical properties. Ceram. Int. 45, 16904–16910 (2019)

    Article  Google Scholar 

  14. S. Bai, S. Hussain, C. Ge, M. Sufyan et al., Unique oblate-like ZnWO4 nanostructures for electrochemical energy storage performances. Mater. Lett. 240, 103–107 (2019)

    Article  CAS  Google Scholar 

  15. S. Hussain, A.J. Khan, M. Arshad, M.S. Javed, A. Ahmad, S.S. Ahmad et al., Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors. Ceram. Int. 47, 8659–8667 (2021)

    Article  CAS  Google Scholar 

  16. S. Hussain, M. Hassan, M. Sufyan et al., Distinctive flower-like CoNi2S4 nanoneedle arrays (CNS– NAs) for superior supercapacitor electrode performances. Ceram. Int. 46, 25942–25948 (2020)

    Article  CAS  Google Scholar 

  17. Z. Xu, G. Zhao, M. Wang, J. Liang, S. Hussain, Tuning the edge-site activity of 2H phase MoSe2 for hydrogen evolution reaction via sulfur substitution and strain engineering. Sci. Adv. Mater. 12, 1–12 (2020)

    Article  Google Scholar 

  18. J. Yesuraj, S. Austin Suthanthiraraj, O. Padmaraj, Synthesis, characterization and electrochemical performance of DNA-templated Bi2MoO6 nanoplates for supercapacitor applications. Mater. Sci. Semicond. Process. 90, 225 (2019)

    Article  CAS  Google Scholar 

  19. J. Yesuraj, O. Padmaraj, S.A. Suthanthiraraj, Synthesis, characterization, and improvement of supercapacitor properties of NiMoO4 nano with polyaniline. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01189-x

    Article  Google Scholar 

  20. J. Yesuraj, E. Elanthamilan, B. Muthuraaman, S.A. Suthanthiraraj, J.P. Merlin, Bio-assisted hydrothermal synthesis and characterization of MnWO4 nanorods for high-performance supercapacitor applications. J. Elec. Mater. (2019). https://doi.org/10.1007/s11664-019-07539-2

    Article  Google Scholar 

  21. S.M. Pawar et al., Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Appl. Surf. Sci. 470, 360–367 (2019)

    Article  CAS  Google Scholar 

  22. Y. Lei et al., Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6(3), 1773 (2014)

    Article  CAS  Google Scholar 

  23. S. Khalid et al., Microwave assisted synthesis of mesoporous NiCo2O4 nanosheets as electrode material for advanced flexible supercapacitors. RSC Adv. 5(42), 33146 (2015)

    Article  CAS  Google Scholar 

  24. A.K. Yedluri, H.J. Kim, Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv. 9(2), 1115 (2019)

    Article  CAS  Google Scholar 

  25. S. Xu, D. Yang, F. Zhang, J. Liu, A. Guo, F. Hou, Fabrication of NiCo2O4 and carbon nanotube nanocomposite films as a high-performance flexible electrode of supercapacitors. RSC Adv. 5(90), 74032 (2015)

    Article  CAS  Google Scholar 

  26. L. Abbasi, M. Arvand, Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Appl. Surf. Sci. 445, 272 (2018)

    Article  CAS  Google Scholar 

  27. A. Pendashteh, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chem. Commun. 50(16), 1972–1975 (2014)

    Article  CAS  Google Scholar 

  28. S. Vijayakumar, S. Nagamuthu, K.S. Ryu, CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications. Electrochim. Acta 238, 99–106 (2017)

    Article  CAS  Google Scholar 

  29. S. Gu, Z. Lou, X. Ma, G. Shen, CuCo2O4 nanowires grown on a Ni wire for high-performance, flexible fiber supercapacitors. ChemElectroChem 2(7), 1042 (2015)

    Article  CAS  Google Scholar 

  30. S. Angelov, E. Zhecheva, K. Petrov, D. Menandjiev, “The properties of a spinel copper cobaltite prepared at low temperatures and normal pressure. Mat. Res. Bull. 17, 235 (1982)

    Article  CAS  Google Scholar 

  31. A. Shanmugavani, R.K. Selvan, Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim. Acta 188, 852 (2016)

    Article  CAS  Google Scholar 

  32. A. Pendashteh et al., Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem. Mater. 27(11), 3919 (2015)

    Article  CAS  Google Scholar 

  33. J. Yesuraj, S.A. Suthanthiraraj, DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors. J. Mater. Sci. Mater. Electron. 29(7), 5862 (2018)

    Article  CAS  Google Scholar 

  34. A.T. Aqueel Ahmed et al., Self-assembled nanostructured CuCo2O4 for electrochemical energy storage and the oxygen evolution reaction via morphology engineering”. Small 14(28), 1 (2018)

    Google Scholar 

  35. Q. Wang, D. Chen, D. Zhang, Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors. RSC Adv. 5(117), 96448 (2015)

    Article  CAS  Google Scholar 

  36. S. Vijayakumar, S.H. Lee, K.S. Ryu, Hierarchical CuCo2O4nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim. Acta 182, 979 (2015)

    Article  CAS  Google Scholar 

  37. A.K. Das, N.H. Kim, S.H. Lee, Y. Sohn, J.H. Lee, Facile synthesis of CuCo2O4 composite octahedrons for high performance supercapacitor application. Compos. Part B Eng. 150, 269 (2018)

    Article  CAS  Google Scholar 

  38. K. Zhang, L. Lin, S. Hussain, S. Han, Core–shell NiCo2O4@ZnWO4 nanosheets arrays electrode material deposited at carbon-cloth for flexible electrochemical supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 12871–12877 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sivashanmugam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivashanmugam, G., Lakshmi, K., Preethi, B. et al. CTAB-templated formation of CuCo2O4/CuO nanorods and nanosheets for high-performance supercapacitor applications. J Mater Sci: Mater Electron 32, 27148–27158 (2021). https://doi.org/10.1007/s10854-021-06845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06845-y

Navigation