Skip to main content
Log in

Ion-beam lithography for fabrication of diffractive optical phase elements in silver-ion-exchanged glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present article, ion-beam lithography in ion-exchanged glasses is used as a method for the fabrication of miniaturized phase optical diffractive elements. It is established that, as a result of the interaction of a low-energy (∼ 40 keV) He+ ion beam with silver-ion-exchanged glasses, the index of refraction of interacted area increases. In the interacted areas of the samples, the formation of neutral silver nanoparticles leads to an increase in the index of refraction. This paves the way to employ such material to produce optical phase diffractive elements such as slits, gratings, or Fresnel’s zone plates. It is found that a remarkable dispersion for the index of refraction (n = n(λ)) gives rise to the dependence of diffraction efficiency of produced elements to the wavelength of the probe beams. The produced elements are of good quality, optically effective, chemically stable, waterproof, and scratch resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.R. Friberg, P.W. Smith, Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quantum Electron. QE-23, 2089–2092 (1987)

    Article  CAS  Google Scholar 

  2. F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G.W. Arnold, G. Battaglin, G. Mattei, Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass. Nucl. Instrum. Meth. Phys. Res. 96, 382–386 (1995)

    Article  CAS  Google Scholar 

  3. F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G.W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, B. Bertonecello, R.F. Haglund Jr., Interaction of high-power laser light with silver nanocluster composite glasses. Appl. Phys. Lett. 69, 3101–3103 (1996)

    Article  CAS  Google Scholar 

  4. 5. A.L. Stepanov, V.N. Popok, D.E. Hole, A.A. Bukharaev, Interaction of high-power laser pulses with glasses containing implanted metallic nanoparticles. Phys. Solid State 43, 2192–2198 (2001)

    Article  Google Scholar 

  5. A. Nahal, H.R.M. Kkhalesifard, J. Mostafavi-Amjad, Photothermal-induced dichroism and micro-cluster formation in Ag+-doped glasses. Appl. Phys. B 79, 513–518 (2004)

    Article  CAS  Google Scholar 

  6. A. Nahal, J. Mostafavi-Amjad, A. Ghods, M.R.H. Khajehpour, S.N.S. Reihani, M.R. Kolahchi, Laser-induced dendritic microstructures on the surface of Ag+-doped glass. J. Appl. Phys. 100, 053503 (2006)

    Article  Google Scholar 

  7. A. Pinchuk, A. Hilger, G. von Plessen, U. Kreibig, Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15, 1890–1896 (2004)

    Article  CAS  Google Scholar 

  8. M.C. Gupta, J. Ballato, The Handbook of Photonics (CRC Press, Taylor & Francis Group, Boca Raton, 2007)

    Google Scholar 

  9. S.I. Najaf, Introduction to Glass Integrated Optics (Artech House, Norwood, 1992)

    Google Scholar 

  10. U. Kriebig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg, New York, 1995)

    Book  Google Scholar 

  11. P.L. Inácio, B.J. Barreto, F. Horowitz, R.R.B. Correia, M.B. Pereira, Silver migration at the surface of ion-exchange waveguides: a plasmonic template. Opt. Mater. Express 3, 390–399 (2013)

    Article  Google Scholar 

  12. A. Nahal, A. Jalehdoost, Kh Hassani, A. Farokhniaee, Variation of index of refraction in the ion-exchanged glasses with the evolution of ionic and neutral silver nano-clusters. Eur. Phys. J. Appl. Phys. 53, 10701 (2011)

    Article  Google Scholar 

  13. A. Nahal, K. Shapoori, Linear dichroism, produced by thermoelectric alignment of silver nanoparticles on the surface of ion-exchanged glass. Appl. Surf. Sci. 255, 7946–7950 (2009)

    Article  CAS  Google Scholar 

  14. A. Nahal, R. Talebi, M.F. Miri, Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles. Appl. Phys. A 106, 941–947 (2012)

    Article  CAS  Google Scholar 

  15. A. Nahal, H.R.M. Khalesifard, Beam power-dependent laser induced fluorescence radiation quenching of silver-ion-exchanged glasses. Opt. Mater. 29, 987–994 (2007)

    Article  CAS  Google Scholar 

  16. A. Nahal, F. Moslehirad, Laser-induced anisotropy in Ag+-doped glasses. J. Mater. Sci. 42(12), 9075–9082 (2007)

    Article  CAS  Google Scholar 

  17. G. Sathiyapriya, K.A. Naseer, K. Marimuthu, E. Kavaz, A. Alalawi, M.S. Al-Buriahi, Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. J. Mater. Sci. Mater. Electron. 32, 8570–8592 (2021)

    Article  CAS  Google Scholar 

  18. K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3–SiO2– Bi2O3–Na2O–Fe2O3) glass system. Silicon 9(5), 785–793 (2017)

    Article  CAS  Google Scholar 

  19. A. Nahal, M. Mahjour-Shafei, S.R. Hosseini, Index of refraction variation and photoluminescence quenching in silver ion exchanged glasses, due to interaction with low energy He+ beam. J. Mater. Sci.: Mater. Electron. 31, 5499–5510 (2020)

    CAS  Google Scholar 

  20. A. Nahal, F. Moslehirad, Laser-induced anisotropy in Ag+-doped glasses. J. Mater. Sci. 42(12), 9075–9082 (2007)

    Article  CAS  Google Scholar 

  21. I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam. J. Appl. Phys. 93, 2343 (2003)

    Article  CAS  Google Scholar 

  22. M. Heinz, J. Meinertz, M. Dubiel, J. Ihlemann, Excimer laser induced spatially resolved formation and implantation of plasmonic particles in glass. Nanomaterials 8, 1035 (2018)

    Article  Google Scholar 

  23. L.A.H. Fleming, S. Wackerow, A.C. Hourd, W.A. Gillespie, G. Seifert, A. Abdolvand, Diffractive optical element embedded in silver doped nanocomposite glass. Opt. Express 20, 22580 (2012)

    Article  Google Scholar 

  24. H. Hofmeister, S. Thiel, M. Dubiel, E. Schurig, Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Appl. Phys. Lett. 70, 1694 (1997)

    Article  CAS  Google Scholar 

  25. R. Kumar, M. Chauhan, M.G. Moinuddin, S.K. Sharma, K.E. Gonsalves, Development of nickel-based negative tone metal oxide cluster resists for sub-10 nm electron beam and helium ion beam lithography. ACS Appl. Mater. Interfaces 12, 19616–19624 (2020)

    Article  CAS  Google Scholar 

  26. M. Mahjour-Shafei, H. Noori, A.H. Ranjbar, Influence of magnetic field on the electric breakdown in penning ion source. Rev. Sci. Instrum. 82, 113502 (2011)

    Article  Google Scholar 

  27. A.S. Sonal, S. Aggarwal, Optical investigation of soda lime glass with buried silver nanoparticles synthesized by ion implantation. J. Non-Crystal. Sol. 485, 57–65 (2018)

    Article  CAS  Google Scholar 

  28. J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, England, 2005)

    Book  Google Scholar 

  29. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  30. R.C. Jaeger “Lithography”. Introduction to Microelectronic Fabrication (2nd edn.) (Upper Saddle River: Prentice Hall, 2002)

    Google Scholar 

  31. J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. 203, 385–420 (1904)

    Article  CAS  Google Scholar 

  32. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. Leipzig 24, 636–664 (1935). (in German)

    Article  CAS  Google Scholar 

  33. G.A. Niklasson, C.G. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)

    Article  CAS  Google Scholar 

  34. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 3rd edn. (Wiley, Hoboken, 2019)

    Google Scholar 

  35. A.Y. Meshalkin, V.V. Podlipnov, A.V. Ustinov, E.A. Achimova, Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth. J. Phys.: Conf. Ser. 1368(2), 022047 (2019)

    Google Scholar 

  36. F. Pedrotti, L. Pedrotti, L. Pedrotti, Introduction to Optics, 3rd edn. (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Khosrow Hassani for his valuable discussions and advices, and also Dr. Abbas Saberi for his financial support of XRF measurements, both of them from Department of Physics of University of Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arashmid Nahal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahal, A., Hosseini, S.R. & Mahjour-Shafiei, M. Ion-beam lithography for fabrication of diffractive optical phase elements in silver-ion-exchanged glasses. J Mater Sci: Mater Electron 32, 23349–23362 (2021). https://doi.org/10.1007/s10854-021-06819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06819-0

Navigation