Skip to main content
Log in

In situ growth of Co3O4 nanoneedles on titanium mesh for electrocatalytic oxygen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Designing high-efficient and low cost of electrodes with seamless integration of substrate and electrocatalyst particles is of significant concern for electrocatalytic water splitting. In this study, we actualized in situ growth of Co3O4 nanoneedles on titanium (Ti) mesh (denoted as Co3O4@Ti) by a simple combination of hydrothermal approach and subsequently calcination treatment under relatively low temperatures. The as-prepared Co3O4@Ti samples were evaluated as anodes for electrocatalytic oxygen evolution reaction (OER) in alkaline electrolyte. It demonstrates that the optimized Co3O4@Ti electrode displayed good OER activity with a small overpotential of 416 mV at a current density of 20 mA cm−2, which is on a par with commercial RuO2 catalyst (overpotential of 403 mV at 20 mA cm−2). The satisfactory OER performance of Co3O4@Ti electrode is largely attributed to the seamless integration of conductive Ti mesh substrate and the direct growth of Co3O4 nanoneedles on Ti mesh with sufficient active sites. This study suggests the potential application of Co3O4@Ti electrode as preeminent OER catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Landman, H. Dotan, G.E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G.-S. Grader, A. Rothschild. Nat. Mater. 16, 646 (2017)

    Article  CAS  Google Scholar 

  2. M.S. Dresselhaus, I.L. Thomas, Nature 414, 332 (2001)

    Article  CAS  Google Scholar 

  3. J. Yeston, Science 355, 143 (2017)

    Google Scholar 

  4. J.A. Turner, Science 305, 972 (2004)

    Article  CAS  Google Scholar 

  5. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)

    Article  CAS  Google Scholar 

  6. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Chem. Soc. Rev. 46, 337 (2017)

    Article  CAS  Google Scholar 

  7. Y. Li, Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, S. Guo, Adv. Energy Mater. 10, 1903120 (2020)

    Article  CAS  Google Scholar 

  8. H. Over, Chem. Rev. 112, 3356 (2012)

    Article  CAS  Google Scholar 

  9. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015)

    Article  CAS  Google Scholar 

  10. X. Shang, J.-H. Tang, B. Dong, Y. Sun, Sustain. Energ. Fuels 4, 3211 (2020)

    Article  CAS  Google Scholar 

  11. H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Electrochim. Acta 249, 253 (2017)

    Article  CAS  Google Scholar 

  12. P.R. Kasturi, S. Shanmugapriya, M. Elizabeth, K. Athira, R.K. Selvan, J. Mater. Sci. Mater. Electron. 31, 2378 (2020)

    Article  CAS  Google Scholar 

  13. K. Wang, C. Liu, W. Wang, N. Mitsuzaki, Z. Chen, J. Mater. Sci. Mater. Electron. 30, 4144 (2019)

    Article  CAS  Google Scholar 

  14. M.P. Kumar, G. Murugadoss, M.R. Kumar, J. Mater. Sci. Mater. Electron. 31, 11286 (2020)

    Article  CAS  Google Scholar 

  15. W. Tang, S. Zuo, J. Wang, Y. Mi, Z. Chen, Electrochim. Acta 247, 835 (2017)

    Article  CAS  Google Scholar 

  16. Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.-M. Cheng, B. Liu, ACS Nano 12, 4565 (2018)

    Article  CAS  Google Scholar 

  17. R.-Q. Li, P. Hu, M. Miao, Y. Li, X.-F. Jiang, Q. Wu, Z. Meng, Z. Hu, Y. Bando, J. Wang, Mater. Chem. A 6, 24767 (2018)

    Article  CAS  Google Scholar 

  18. L. Marc, K.C. Sandra, P. Christian, S. Hans-Peter, A. Markus, S. Menny, Angew. Chem. Int. Edit. 54, 12361 (2015)

    Article  CAS  Google Scholar 

  19. J. Tian, J. Chen, J. Liu, Q. Tian, P. Chen, Nano Energy 48, 284 (2018)

    Article  CAS  Google Scholar 

  20. M. Verma, L. Sinha, P.M. Shirage, J. Mater. Sci. Mater. Electron. 32, 12292 (2021)

    Article  CAS  Google Scholar 

  21. L. Zhang, Q. Liang, P. Yang, Y. Huang, W. Chen, X. Deng, H. Yang, J. Yan, Y. Liu, Int. J. Hydrogen Energ. 44, 24209 (2019)

    Article  CAS  Google Scholar 

  22. M. Guo, K. Xu, Y. Qu, F. Zeng, C. Yuan, Electrochim. Acta 268, 10 (2018)

    Article  CAS  Google Scholar 

  23. R. Li, D. Zhou, J. Luo, X. Xu, J. Li, S. Li, P. Cheng, D. Yuan, J. Power Sources 341, 250 (2017)

    Article  CAS  Google Scholar 

  24. T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136, 13925 (2014)

    Article  CAS  Google Scholar 

  25. C. Zhang, J. Xiao, X. Lv, L. Qian, S. Yuan, S. Wang, P. Lei, J. Mater. Chem. A 4, 16516 (2016)

    Article  CAS  Google Scholar 

  26. X. Zhou, Z. Xia, Z. Tian, Y. Ma, Y. Qu. J. Mater. Chem. A 3, 8107 (2015)

    Article  CAS  Google Scholar 

  27. X. Wang, T.-T. Li, Y.Q. Zheng, Int. J. Hydrogen Energ. 43, 2009 (2018)

    Article  CAS  Google Scholar 

  28. C. Mahala, M.D. Sharma, M. Basu, New J. Chem. 43, 15768 (2019)

    Article  CAS  Google Scholar 

  29. Z. Li, L. Liu, L. Li, W. Qi, W. Lai, L. Li, X. Zhao, S. Liu, W. Zhang, Appl. Surf. Sci. 541, 148429 (2021)

    Article  CAS  Google Scholar 

  30. H. Zhang, X. Lv, R. Li, M. Zhang, M. Guo, Thin Solid Films 681, 103 (2019)

    Article  CAS  Google Scholar 

  31. W. Liu, H. Zhang, H.-G. Wang, M. Zhang, M. Guo, Appl. Surf. Sci. 422, 304 (2017)

    Article  CAS  Google Scholar 

  32. Z. Li, W. Qi, L. Li, Z. Ma, W. Lai, L. Li, X. Jin, Y. Zhang, W. Zhang., Sol. Energy 214, 502 (2021)

    Article  CAS  Google Scholar 

  33. Z. Du, M. Liu, Y. Li, Y. Chen, X. Zhong, J. Mater. Chem. A 5, 5577 (2017)

    Article  CAS  Google Scholar 

  34. B. Ji, G. Yan, W. Zhao, X. Zhao, J. Ni, J. Duan, Z. Chen, Z. Yang, Ceram.Int. 46, 20830 (2020)

    Article  CAS  Google Scholar 

  35. T. Saboo, F. Tavella, C. Ampelli, S. Perathoner, C. Genovese, B.C. Marepally, L. Veyre, E.A. Quadrelli, G. Centi, Sol. Energ. Mater. Sol. C. 178, 98 (2018)

    Article  CAS  Google Scholar 

  36. T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, L. Chen, X. Sun, Adv. Energy Mater. 7, 1700020 (2017)

    Article  CAS  Google Scholar 

  37. K. Li, J. Zhang, R. Wu, Y. Yu, B. Zhang. Adv. Sci. 3, 1500426 (2016)

    Article  CAS  Google Scholar 

  38. W. Zhou, Y. Zhou, L. Yang, J. Huang, Y. Ke, K. Zhou, L. Li, S. Chen, J. Mater. Chem. A 3, 1915 (2015)

    Article  CAS  Google Scholar 

  39. H. Li, Q. Tang, B. He, P. Yang, J. Mater. Chem. A 4, 6513 (2016)

    Article  CAS  Google Scholar 

  40. Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng, Y. Chen. ACS Catalysis 8, 1913 (2018)

    Article  CAS  Google Scholar 

  41. Q. Xu, H. Jiang, H. Zhang, H. Jiang, C. Li, Electrochim. Acta 259, 962 (2018)

    Article  CAS  Google Scholar 

  42. Y. Lü, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, ACS App. Mater. Inter. 6, 4186 (2014)

    Article  CAS  Google Scholar 

  43. X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma, Y. Qu, ACS App. Mater. Inter. 7, 20322 (2015)

    Article  CAS  Google Scholar 

  44. A.V. Munde, B.B. Mulik, R.P. Dighole, B.R. Sathe, New J. Chem. 44, 15776 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the College Student Innovation and Entrepreneurship Program of Hunan Province (S201912658002), the NSF of Hunan Province (2019JJ50206), and the Scientific Research Project of Hunan Education Department (19B230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Yang.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Jiang, L., Jia, X. et al. In situ growth of Co3O4 nanoneedles on titanium mesh for electrocatalytic oxygen evolution. J Mater Sci: Mater Electron 32, 23275–23284 (2021). https://doi.org/10.1007/s10854-021-06812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06812-7

Navigation