Skip to main content
Log in

A novel ultrasonic assisted-reverse micelle procedure to synthesize Eu-MOF nanostructure with high sono/sonophotocatalytic activity: a systematic study for brilliant green dye removal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, one of the growing environmental concerns has been contamination of water sources by dyes. For solving this problem, different nanostructures with various potential have been suggested. Among these nanostructures, Metal Organic Frameworks (MOFs), novel porous crystalline nanostructures with unique physiochemical properties, have drawn great attention for removal of dyes from different solutions. In this work, a new nanostructure of Eu-MOF was synthesized through facial, fast, and cost-effective ultrasound assisted reverse micelle (UARM) method. This nanostructure was developed for sonocatalytic and sonophotocatalytic degradation of brilliant green dye (BG) from aqueous solution. Further, 2 k−1 factorial design was used for investigating the effect of various experimental parameters including catalyst dosage, contact time, initial dye concentration, ultrasonic power, and pH on the sonocatalyst and sonophotocatalyst behaviors of Eu-MOF. The results of analysis of variance confirmed that these parameters have a significant effect on the degradation efficiency of brilliant green by Eu-MOF. For achieving the best optimization of the BG degradation, the response surface methodology was applied. According to this methodology, the Eu-MOF has a significant potential for BG degradation as high as 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yang, H. Chen, X. Zou, X.L. Shi, W.D. Liu, L. Feng, Z.G. Chen, Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Appl. Mater. Interfaces. 12(22), 24845–24854 (2020)

    Article  CAS  Google Scholar 

  2. V.L. Gole, P.R. Gogate, Degradation of brilliant green dye using combined treatment strategies based on different irradiations. Sep. Purif. Technol. 133, 212–220 (2014)

    Article  CAS  Google Scholar 

  3. Y. Duan, Y. Liu, Z. Chen, D. Liu, E. Yu, X. Zhang, H. Du, Amorphous molybdenum sulfide nanocatalysts simultaneously realizing efficient upgrading of residue and synergistic synthesis of 2D MoS 2 nanosheets/carbon hierarchical structures. Green Chem. 22(1), 44–53 (2020)

    Article  CAS  Google Scholar 

  4. M. Punzi, A. Anbalagan, R.A. Borner, B.-M. Svensson, M. Jonstrup, B. Mattiasson, Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chem. Eng. J. 270, 290–299 (2015)

    Article  CAS  Google Scholar 

  5. P. Canizares, F. Martínez, C. Jimenez, J. Lobato, M.A. Rodrigo, Coagulation and electrocoagulation waste polluted with dye. Environ. Sci. Technol. 40, 6418–6424 (2006)

    Article  CAS  Google Scholar 

  6. K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G. Beheir, M. Refaa, Removal of rhodamin B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water. Res. 44, 1449–1461 (2010)

    Article  CAS  Google Scholar 

  7. N.P. Khumalo, L.N. Nthunya, E.D. Canck, S. Derese, A.R. Verliefde, A.T. Kuvarega, B.B. Mamba, S.D. Mhlanga, D.S. Dlamini, Congo red dye removal by direct membrane distillation using PVDF/PTEE membrane. Sep. Purif. Technol. 211, 578–586 (2019)

    Article  CAS  Google Scholar 

  8. M.S.U. Rehman, M. Munir, M. Ashfaq, N. Rashid, M.F. Nazar, M. Danish, J.-I. Han, Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 228, 54–62 (2013)

    Article  CAS  Google Scholar 

  9. X. Li, K. Cu, Z. Guo, T. Yang, Y. Cao, Y. Xiang, H. Chen, M. Xi, Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chem. Eng. J. 379, e122324 (2020)

    Article  CAS  Google Scholar 

  10. X. Huang, T. Zhu, W. Duan, S. Liang, G. Li, W. Xiao, Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type. J. Hazard. Mater. 381, e12099 (2020)

    Article  CAS  Google Scholar 

  11. N.T. Hien, L.H. Nguyen, H.T. Van, T.D. Nguyen, T.H.V. Nguyen, T.H.H. Chu, T.V. Nguyen, V.T. Trinh, X.H. Vu, K.H.H. Aziz, Heterogeneous catalyst ozonation of Direct Black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastes. Sep. Purif. Technol. 233, e115961 (2020)

    Article  CAS  Google Scholar 

  12. N. Shahmahdi, R. Dehghanzadeh, H. Aslani, S.B. Shokouhi, Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant. Chem. Eng. J. 383, e123093 (2020)

    Article  CAS  Google Scholar 

  13. S. Lakshmi Prabavathi, K. Saravanakumar, T.T.I. Nkambule, V. Muthuraj, G. Mamba, Enhanced photoactivity of cerium tungstate-modified graphitic carbon nitride heterojunction photocatalyst for the photodegradation of moxifloxacin. J. Mater. Sci. Mater. 31, 11434–11447 (2020)

    Article  CAS  Google Scholar 

  14. R. Bomila, S. Suresh, S. Srinivasan, Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. J. Mater. Sci. Mater. 30, 582–592 (2019)

    Article  CAS  Google Scholar 

  15. L. Yi, B. Li, Y. Sun, S. Li, Q. Qi, H. Sun, D. Fang, J. Wang, Sep. Purif. Technol. 250, e117257 (2020)

    Article  CAS  Google Scholar 

  16. P. Gholami, L. Dinpazhoh, A. Khataee, A. Hassani, A. Bhatnagar, Facile hydrothermal synthesis of novel Fe-Cu layered double hydroxide/biochar nanocomposite with enhanced sonocatalytic activity for degradation of cefazolin sodium. J. Hazard. Mater. 381, e120742 (2020)

    Article  CAS  Google Scholar 

  17. B.-M. Jun, J. Han, C.M. Park, Y. Yoon, Ultrason Sonochem. 64, e104993 (2020)

    Article  CAS  Google Scholar 

  18. L. Ghalamchi, S. Aber, An aminated silver orthophosphate/graphitic carbon nitride nanocomposite: an efficient visible light sonophotocatalyst. J. Mater. Chem. Phys. 399, e123062 (2020)

    Google Scholar 

  19. M. Sun, Y. Yao, W. Ding, S. Anandan, J. Alloys. Compd. 820, e153172 (2020)

    Article  CAS  Google Scholar 

  20. A.V. Karim, A. Shriwastav, Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: degradation kinetics and pathways. Chem. Eng. J. 392, e124853 (2020)

    Article  CAS  Google Scholar 

  21. G. Asgari, A. Shabanloo, M. Salari, F. Eslami, Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Environ. Res. 184, e109367 (2020)

    Article  CAS  Google Scholar 

  22. H.C. Yap, Y.L. Pang, S. Lim, A.Z. Abdullah, H.C. Ong, C.H.A. Wu, comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants. Int. J. Environ. Sci. TeCH. 16, 601–628 (2019)

    Article  CAS  Google Scholar 

  23. L. Carmine, A. Ancona, K.D. Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hernandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal B. 243, 629–640 (2019)

    Article  CAS  Google Scholar 

  24. H. Daneshvar, M.S.S. Dorraji, A.R. Amani-Ghadim, M.H. Rasoulifard, Enhanced Sonocatalytic Performance of ZnTi Nano-Layered Double Hydroxide by Substitution of Cu (II) Cations. Ultrason. Sonochem. 58, e104632 (2019)

    Article  CAS  Google Scholar 

  25. A. Mirzaei, F. Haghighat, Z. Chen, L. Yerushalmi, Sonocatalytic removal of ampicillin by Zn(OH)F: effect of operating parameters, toxicological evaluation and by-products identification. J. Hazard. Mater. 375, 86–95 (2019)

    Article  CAS  Google Scholar 

  26. A. Khataee, T.S. Rad, S. Nikzat, A. Hassani, M.H. Aslan, M. Kobya, E. Demirbaş, Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of oxifloxacin. Chem. Eng. J. 375, e122102 (2019)

    Article  CAS  Google Scholar 

  27. M. Zargazi, M.H. Entezari, Sonochemical versus hydrothermal synthesis of bismuth tungstate nanostructures: photocatalytic, sonocatalytic and sonophotocatalytic activities. Ultrason. Sonochem. 51, 1–11 (2019)

    Article  CAS  Google Scholar 

  28. P. Qiu, B. Park, J. Choi, B. Thokchom, A.B. Pandit, J. Khim, A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 45, 29–49 (2018)

    Article  CAS  Google Scholar 

  29. Y. Son, M. Lim, J. Khim, M. Ashokkumar, Attenuation of UV light in large-scale sonophotocatalytic reactors: the effects of ultrasound irradiation and TiO2 concentration. Ind. Eng. Chem. Res. 51, 232–239 (2012)

    Article  CAS  Google Scholar 

  30. N. Geng, W. Chen, H. Xu, M. Ding, Z. Liu, Z. Shen, A sono-photocatalyst for humic acid removal from water: operational parameters, kinetics and mechanism. Ultrason. Sonochem. 57, 242–252 (2019)

    Article  CAS  Google Scholar 

  31. Y. Lu, H. Jing, H. Yu, Y. Zhao, Y. Li, M. Huo, S. Zhu, J.C. Crittenden, Enhanced catalytic performance of BiVO4/Pt under the combination of visible-light illumination and ultrasound waves. J Taiwan Inst. Chem. Engrs. 102, 133–142 (2019)

    Article  CAS  Google Scholar 

  32. L. Zeng, S. Li, X. Li, J. Li, S. Fan, X. Chen, Z. Yin, M. Tadé, S. Liu, Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study. Chem. Eng. J. 378, e122039 (2019)

    Article  CAS  Google Scholar 

  33. Y. Liu, Z. Liu, D. Huang, M. Cheng, G. Zeng, C. Lai, C. Zhang, C. Zhou, W. Wang, D. Jiang, H. Wang, B. Shao, Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev. 388, 63–78 (2019)

    Article  CAS  Google Scholar 

  34. E.M. El-Fawal, S.A. Younis, T. Zaki, J. Photochem. Photobiol. A. 401, e112746 (2020)

    Article  CAS  Google Scholar 

  35. G.-J. Lee, Y.-W. Chien, S. Anandan, C. Lv, J. Dong, J.J. Wu, Fabrication of metal-doped BiOI/MOF composite photocatalysts with enhanced photocatalytic performance. Int J Hydrogen Energy. (2020). https://doi.org/10.1016/j.ijhydene.2020.03.254

    Article  Google Scholar 

  36. X.-D. Du, X.-H. Yi, P. Wang, W. Zheng, J. Deng, C.-C. Wang, Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metalorganic framework membrane under sunlight irradiation. Chem. Eng. J. 356, 393–399 (2019)

    Article  CAS  Google Scholar 

  37. J.R. Choi, T. Tachikawa, M. Fujitsuka, T. Majima, Europium-based metal-organic framework as a photocatalyst for the one-electron oxidation of organic compounds. Langmuir 26, 10437–10443 (2010)

    Article  CAS  Google Scholar 

  38. M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing, Z. Sun, Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe3+. ACS. Appl. Mater. Interfaces. 5, 1078–1083 (2013)

    Article  CAS  Google Scholar 

  39. D. Saha, T. Maity, S. Koner, Alkaline earth metal-based metal–organic framework: hydrothermal synthesis, X-ray structure and heterogeneously catalyzed Claisen-Schmidt reaction. Dalton Trans. 43, 13006–13017 (2014)

    Article  CAS  Google Scholar 

  40. H.F. Clausen, R.D. Poulsen, A.D. Bond, M.-A.S. Chevallier, B.B. Iversen, Solvothermal synthesis of new metal organic framework structures in the zinc–terephthalic acid–dimethyl formamide system. J. Solid. State. Chem. 178, 3342–3351 (2005)

    Article  CAS  Google Scholar 

  41. P. Pachfule, R. Das, P. Poddar, R. Banerjee, Solvothermal synthesis, structure, and properties of metal organic framework isomers derived from a partially fluorinated link. Cryst. Growth. Des. 11, 1215–1222 (2011)

    Article  CAS  Google Scholar 

  42. A. Sanchez, I. Imaz, M. Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013)

    Article  CAS  Google Scholar 

  43. E.R. Parnham, R.E. Morris, Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res. 40, 1005–1013 (2007)

    Article  CAS  Google Scholar 

  44. A.M. Joaristi, J.J. Alcañiz, P. Crespo, F. Kapteijn, J. Gascon, Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth. Des. 12, 3489–3498 (2012)

    Article  CAS  Google Scholar 

  45. M. Roosta, M. Ghaedi, A. Daneshfar, Optimization of ultrasound-assisted reverse micelles dispersive liquid–liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography. Food. Chem. 16, 1120–1126 (2014)

    Google Scholar 

  46. F. Akbarzadeh, M. Motaghi, N. P. S., Chauhan, G. Sargazi, , A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application. Heliyon 6(1), e03231 (2020)

    Article  Google Scholar 

  47. N.A. Khan, S.H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coordin. Chem. Rew. 285, 11–23 (2015)

    Article  CAS  Google Scholar 

  48. Z.X. Jing, F.X. Liang, W.B. Hui, Z.L. Sun, Z.N. Feng, Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactors. Sci. China. Chem. 57, 141–146 (2014)

    Article  CAS  Google Scholar 

  49. G. Sargazi, D. Afzali, A. Mostafavi, S.Y. Ebrahimipour, Ultrasound-assisted facile synthesis of a new tantalum (V) metal-organic framework nanostructure: design, characterization, systematic study, and CO2 adsorption performance. J. Solid. State. Chem. 250, 32–48 (2017)

    Article  CAS  Google Scholar 

  50. L. Sun, C. Li, C. Zhang, T. Liang, Z. Zhao, The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring. Sensors 19(8), 1851 (2019)

    Article  CAS  Google Scholar 

  51. M. Wang, M. Hu, Z. Li, L. He, Y. Song, Q. Jia, M. Du, Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectron. 142, e111536 (2019)

    Article  CAS  Google Scholar 

  52. S. Zhang, F. Rong, C. Guo, F. Duan, L. He, M. Wang, M. Du, Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord Chem Rev. 439, e213948 (2021)

    Article  CAS  Google Scholar 

  53. W.Y. Huang, G.Q. Wang, W.H. Li, T.T. Li, G.J. Ji, S.C. Ren, Y.J. Ding, Porous ligand creates new reaction route: bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 6(9), 2300–2313 (2020)

    Article  CAS  Google Scholar 

  54. D. Bhattacharya, D. Ghosha, D. Monda, B.K. Paul, N. Bose, S. Das, M. Basu, Visible light driven degradation of brilliant green dye using titanium based ternary metal oxide photocatalyst. Results Phys. 12, 1850–1858 (2019)

    Article  Google Scholar 

  55. S. Kaur, S. Sharma, A. Umar, S. Singh, S.K. Mehta, S.K. Kansal, Solar light driven enhanced photocatalytic degradation of brilliant green dye based on ZnS quantum dots. Superlattice Microst. 103, 365–375 (2017)

    Article  CAS  Google Scholar 

  56. N. Shanmugam, T. Sathya, G. Viruthagiri, C. Kalyanasundaram, R. Gobi, S. Ragupathy, Photocatalytic degradation of brilliant green using undoped and Zn doped SnO2 nanoparticles under sunlight irradiation. Appl. Surf. Sci. 360, 283–290 (2016)

    Article  CAS  Google Scholar 

  57. P. Taneja, S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal, Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles. Mater. Chem. Phys. 211, 335–342 (2018)

    Article  CAS  Google Scholar 

  58. N. Thirugnanam, H. Song, Y. Wu, Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation. Chinese J. Catal. 38, 2150–2159 (2017)

    Article  CAS  Google Scholar 

  59. R. Nithya, S. Ragupathy, D. Sakthi, V. Arun, N. Kannadasan, A study on Mn doped ZnO loaded on CSAC for the photocatalytic degradation of brilliant green dye. Chem. Phys. Lett. 755, e137769 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the founders of Kerman University, Mr. Alireza Afzalipour, and his wife, Mrs. Fakhereh Saba, for their foresight and generosity in training future generations of doctors, engineers, and scientists. Also, the authors would like to acknowledge and thank Dr. Parviz Dabiri for his generous support for the research activities of the chemistry laboratories at Kerman University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Shamspur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhosseini, H., Shamspur, T., Mostafavi, A. et al. A novel ultrasonic assisted-reverse micelle procedure to synthesize Eu-MOF nanostructure with high sono/sonophotocatalytic activity: a systematic study for brilliant green dye removal. J Mater Sci: Mater Electron 32, 22840–22859 (2021). https://doi.org/10.1007/s10854-021-06762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06762-0

Navigation