Skip to main content
Log in

Effects of strain on ultrahigh-performance optoelectronics and growth behavior of high-quality indium tin oxide films on yttria-stabilized zirconia (001) substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, in situ reflection high-energy electron diffraction patterns were used to observe the preparation of high-quality indium tin oxide (ITO) films on yttria-stabilized zirconia (001) substrates using laser molecular-beam epitaxy at different growth pressures and temperatures. X-ray diffraction images showed that increasing the growth temperature or decreasing the pressure diminished the out-of-plane lattice length of the film because of the increased lattice relaxation. Atomic force microscope images and scanning electron microscope showed some crack formations probably due to the release of the strain, causing an increase in the lattice length instead of decrease at the temperature range from 350 to 400 °C. High-resolution transmission electron microscopy showed that the interface between the ITO film and substrate was sharply defined, which indicates the high quality of the film. The sheet resistance of the film increased with increasing growth temperature or pressure, while the optical bandgap did not decrease monotonically because of the effects of strain in the film. Because of the strain, the ITO film initially grew as three-dimensional (3D) islands, like semiconductor quantum dots, and then changed to a quasi-two-dimensional form as the film thickness increased from 1 to 30 nm. The sheet resistance decreased rapidly as the film thickness increased from 20 to 150 nm, but the rate of decrease slowed as the film thickness increased from 150 to 500 nm. The film transmissivity was not significantly affected by the film thickness, growth temperature, or growth pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.H. Liu, S. Nie, J. Luo, Y. Gao, X.Y. Wang, Q. Wan, Adv. Electron. Mater. 5, 1900235 (2019)

    Article  Google Scholar 

  2. M.R. Akanda, A.M. Osman, M.K. Nazal, M.A. Aziz, J. Electrochem. Soc. 167, 037534 (2020)

    Article  CAS  Google Scholar 

  3. J. Txintxurreta, E. G-Berasategui, R. Ortiz, O. Hernández, L. Mendizábal, J. Barriga,, Coatings 11, 92 (2021)

    Article  CAS  Google Scholar 

  4. S.K. Lu, J.T. Huang, T.H. Lee, J.J. Wang, D.S. Liu, Smart Sci. 2, 7 (2014)

    Article  Google Scholar 

  5. Z.X. Chen, W.C. Li, R. Li, Y.F. Zhang, G.Q. Xu, H.S. Cheng, Langmuir 29, 13836 (2013)

    Article  CAS  Google Scholar 

  6. H. Hosono, Thin Solid Films 515, 6000–6014 (2007)

    Article  CAS  Google Scholar 

  7. R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631 (1998)

    Article  Google Scholar 

  8. E.J. Tarsa, J.H. English, J.S. Speck, Appl. Phys. Lett. 62, 2332 (1993)

    Article  CAS  Google Scholar 

  9. S.M. Song, T.L. Yang, Y.H. Li, Z.Y. Pang, L. Lin, M.S. Lv, S.H. Han, Vacuum 83, 1091 (2009)

    Article  CAS  Google Scholar 

  10. S. Dewan, M. Tomar, R.P. Tandon, V. Gupta 5, 15361 (2018)

    CAS  Google Scholar 

  11. M. Yoshimoto, A. Sasaki, S. Akiba, Sci. Technol. Adv. Mater. 5, 527 (2004)

    Article  CAS  Google Scholar 

  12. H. Zhou, L.J. Wu, H.Q. Wang, J.C. Zheng, L.H. Zhang, K. Kisslinger, Y.P. Li, Z.Q. Wang, H. Cheng, S.M. Ke, Y. Li, J.Y. Kang, Y.M. Zhu, Nat. Commun. 8, 1474 (2017)

    Article  Google Scholar 

  13. P. Ágoston, C. Körber, A. Klein, M.J. Puska, R.M. Nieminen, K. Albe, J. Appl. Phys. 108, 053511 (2010)

    Article  Google Scholar 

  14. M.A. Cotta, R.A. Hamm, S.N.G. Chu, R. Hull, L.R. Harriott, H. Temkin, Mater. Sci. Eng. B 30, 137 (1995)

    Article  Google Scholar 

  15. H. Zhou, H.Q. Wang, Y.P. Li, K.Y. Li, J.Y. Kang, J.C. Zheng, Z. Jiang, Y.Y. Huang, L.J. Wu, L.H. Zhang, K. Kisslinger, Y.M. Zhu, ACS Appl. Mater. Interfaces 6, 13823 (2014)

    Article  CAS  Google Scholar 

  16. M. Kasaia, H. Dohi, Surf. Sci. 689, 121461 (2019)

    Article  Google Scholar 

  17. M.D. Scafetta, Z.Z. Yang, S.R. Spurgeon, M.E. Bowden, T.C. Kaspar, S.M. Heald, S.A. Chambers, J. Vac. Sci. Technol. A 37, 031511 (2019)

    Article  Google Scholar 

  18. M.S. Jamala, S.A. Shahahmadic, P. Chelvanathana, H.F. Alharbid, M.R. Karime, M.A. Dare, M. Luqmand, N.H. Alharthid, Y.S. Al-Harthif, M. Aminuzzamang, N. Asima, K. Sopiana, S.K. Tiongc, N. Aminc, M. Akhtaruzzaman, Results Phys. 14, 102360 (2019)

    Article  Google Scholar 

  19. Y. Takagi, Y. Furukawa, A. Wakahara, H. Kan, J. Appl. Phys. 107, 063506 (2010)

    Article  Google Scholar 

  20. L.Y. Zhang, H.Y. Wu, J. Zhou, F.X. Wu, Y.B. Chen, S.H. Yao, S.T. Zhang, Y.F. Chen, Appl. Surf. Sci. 280, 282 (2013)

    Article  CAS  Google Scholar 

  21. K. Taira, Y. Hirose, S. Nakao, N. Yamada, T. Kogure, T. Shibata,, T. Hasegawa, T. i. Sasaki. ACS Nano 8, 6145 (2014)

    Article  CAS  Google Scholar 

  22. N. Biškup, J. Salafranca, V. Mehta, M.P. Oxley, Y. Suzuki, S.J. Pennycook, S.T. Pantelides, M. Varela, Phys. Rev. Lett. 112, 087202 (2014)

    Article  Google Scholar 

  23. J.C. Jiang, E.I. Meletis, K.I. Gnanasekar, J. Mater. Res. 18, 2556 (2003)

    Article  CAS  Google Scholar 

  24. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, H. Hosono, Appl. Phys. Lett. 76, 2740 (2000)

    Article  CAS  Google Scholar 

  25. N. Taga, H. Odaka, Y. Shigesato, I. Yasui, M. Kamei, T.E. Haynes, J. Appl. Phys. 80, 978 (1996)

    Article  CAS  Google Scholar 

  26. W.F. Wu, B.S. Chiou, S.T. Hsieh, Semicond. Sci. Technol. 9, 1242 (1994)

    Article  CAS  Google Scholar 

  27. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  CAS  Google Scholar 

  28. S. Pizzini, R. Morlotti, J. Electrochem. Soc. 114, 1179 (1967)

    Article  CAS  Google Scholar 

  29. A.A. Ahmed, M. Devarajan, N. Afzal, Mater. Sci. Semicond. Process. 63, 137 (2017)

    Article  CAS  Google Scholar 

  30. A.K.M. Hasan, K. Sobayel, I. Raifuku, Y. Ishikawa, M. Md. Shahiduzzaman, H. Nour, H. Sindi, M. Moria, K. Rawa, N. Sopian, Amin, Md. Akhtaruzzaman. Results in Phys. 17, 103122 (2020)

    Article  Google Scholar 

  31. B.A. Joyce, P.C. Kelires, A.G. Naumovets, D.D. Vvedensky. Quantum Dots: Fundamentals, Applications, and Frontiers. Springer, New York, pp 73–85 (2005)

  32. J. Kim, C. Yang, U. Sim, G.D. Lee, J. Park, Y. Lee, E. Yoon, J. Appl. Phys. 110, 044302 (2011)

    Article  Google Scholar 

  33. T. Chung, G. Walter, N. Holonyak Jr., J. Appl. Phys. 97, 053510 (2005)

    Article  Google Scholar 

  34. U. Betz, M.K. Olsson, J. Marthy, M.F. Escolá, F. Atamny, Sur, Coat. Technol. 200, 5751 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

Dr. Zhou is thankful to the National Natural Science Foundation of China (Grant No. 11804050) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Zhou prepared ITO films and characterized the structures and optoelectronic properties of film under the help from the Prof. Ke and Liao except for the measurement of Scanning Electron Microscope and Transmission Electron Microscope, which were finished at the professional centre for instrumental analysis. The manuscript was written by Dr. Zhou and the other two authors revised it.

Corresponding author

Correspondence to Hua Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Liao, X. & Ke, S. Effects of strain on ultrahigh-performance optoelectronics and growth behavior of high-quality indium tin oxide films on yttria-stabilized zirconia (001) substrates. J Mater Sci: Mater Electron 32, 21462–21471 (2021). https://doi.org/10.1007/s10854-021-06654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06654-3

Navigation