Skip to main content

Advertisement

Log in

Enriched energy storage capability and bi-functional ability of boron-doped graphene as efficient electrode for supercapacitors and lithium sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work depicts the preparation of boron-doped graphene (BG) and its application as bi-functional electrode material for both the supercapacitors and lithium–sulfur (Li–S) battery. Structural, morphological, and elemental analyses of the prepared material were acquired via X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, Scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. BG worked well in supercapacitors as a capacitive electrode, featuring a high specific capacitance of 239 F g−1 at a current rate of 1 A g−1 and high capacity retention of 85% over 10,000 charge/discharge cycles with average coulombic efficiency of 99.5%. In addition, the sulfur/boron-doped graphene (SBG) binary composite was prepared via melt diffusion method and used as the positive electrode material in Li–S batteries. BG is effective polysulfide adsorbent and its sheet-like structure accommodates more content of sulfur, which restricts the shuttle effect and volume changes of active material during cycling. The SBG composite shows an initial discharge capacity of 1355 mAh g−1, and it retains the discharge capacity of 636 mAh g−1 over the 50 cycles. The present work demonstrates that BG is an efficient electrode material for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.J. Tarimo, K.O. Oyedotun, A.A. Mirghni, N.F. Sylla, N. Manyala, Electrochim. Acta 353, 136498 (2020). https://doi.org/10.1016/j.electacta.2020.136498

    Article  CAS  Google Scholar 

  2. G. Babu, A. Sawas, N.K. Thangavel, L.M.R. Arava, J. Phys. Chem. C 122(20), 10765–10772 (2018). https://doi.org/10.1021/acs.jpcc.8b02633

    Article  CAS  Google Scholar 

  3. Y. Zhang, Z. Gao, N. Song, X. Li, Electrochim. Acta 222, 1257–1266 (2016). https://doi.org/10.1016/j.electacta.2016.11.099

    Article  CAS  Google Scholar 

  4. J. Cai, Y. Song, X. Chen, Z. Sun, Y. Yi, J. Sun, Q. Zhang, J. Mater. Chem. A 8(4), 1757–1766 (2020). https://doi.org/10.1039/C9TA11958B

    Article  CAS  Google Scholar 

  5. P. Rajkumar, K. Diwakar, G. Radhika, K. Krishnaveni, R. Subadevi, M. Sivakumar, Vacuum 161, 37–48 (2019). https://doi.org/10.1016/j.vacuum.2018.12.016

    Article  CAS  Google Scholar 

  6. M. Abdollahifar, H.W. Liu, C.H. Lin, Y.T. Weng, H.S. Sheu, J.F. Lee, M.L. Lu, Y.F. Liao, N.L. Wu, Energy Environ. Mater. 3(3), 405–413 (2020). https://doi.org/10.1002/eem2.12094

    Article  CAS  Google Scholar 

  7. D. Karuppiah, R. Palanisamy, A. Ponnaiah, S. Rengapillai, S. Marimuthu, Int. J. Energy Res. 44(9), 7591–7602 (2020). https://doi.org/10.1002/er.5492

    Article  CAS  Google Scholar 

  8. S. Zang, J. Jiang, Y. An, Z. Li, H. Guo, Y. Sun, H. Dou, X. Zhang, J. Electroanal. Chem. 876, 114723 (2020). https://doi.org/10.1016/j.jelechem.2020.114723

    Article  CAS  Google Scholar 

  9. S. Alagar, R. Madhuvilakku, R. Mariappan, S. Piraman, J. Mater. Sci. Mater. Electron. 29(2), 1173–1181 (2018). https://doi.org/10.1007/s10854-017-8019-7

    Article  CAS  Google Scholar 

  10. D. Cericola, P. Novák, A. Wokaun, R. Kötz, J. Power Sources 196(23), 10305–10313 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.032

    Article  CAS  Google Scholar 

  11. K. Kalaiappan, S. Rengapillai, S. Marimuthu, R. Murugan, P. Thiru, Front. Chem. Sci. Eng. 14, 976–987 (2020). https://doi.org/10.1007/s11705-019-1897-x

    Article  CAS  Google Scholar 

  12. N. Zheng, G. Jiang, X. Chen, J. Mao, N. Jiang, Y. Li, Nanomicro Lett. 11(1), 43 (2019). https://doi.org/10.1007/s40820-019-0275-z

    Article  CAS  Google Scholar 

  13. P. Rajkumar, K. Diwakar, R. Subadevi, R.M. Gnanamuthu, F.M. Wang, M. Sivakumar, J. Phys. D Appl. Phys. 53(26), 265501 (2020). https://doi.org/10.1088/1361-6463/ab8137

    Article  CAS  Google Scholar 

  14. G. Radhika, R. Subadevi, K. Krishnaveni, W.R. Liu, M. Sivakumar, J. Nanosci. Nanotechnol. 18(1), 127–131 (2018). https://doi.org/10.1166/jnn.2018.14568

    Article  CAS  Google Scholar 

  15. J. Shi, Q. Kang, Y. Mi, Q. Xiao, Electrochim. Acta 324, 134849 (2019). https://doi.org/10.1016/j.electacta.2019.134849

    Article  CAS  Google Scholar 

  16. K. Krishnaveni, R. Subadevi, M. Sivakumar, M. Raja, T. Prem Kumar, J. Sulfur Chem. 40(4), 377–388 (2019). https://doi.org/10.1080/17415993.2019.1582655

    Article  CAS  Google Scholar 

  17. Y. Chen, S. Choi, D. Su, X. Gao, G. Wang, Nano Energy 47, 331–339 (2018). https://doi.org/10.1016/j.nanoen.2018.03.008

    Article  CAS  Google Scholar 

  18. G. Radhika, K. Krishnaveni, C. Kalaiselvi, R. Subadevi, M. Sivakumar, Polym. Bull. 77, 4167–4179 (2020). https://doi.org/10.1007/s00289-019-02963-0

    Article  CAS  Google Scholar 

  19. K. Wu, Y. Hu, Z. Shen, R. Chen, X. He, Z. Cheng, P. Pan, J. Mater. Chem. A 6(6), 2693–2699 (2018). https://doi.org/10.1039/C7TA09641K

    Article  CAS  Google Scholar 

  20. K. Kalaiappan, S. Marimuthu, S. Rengapillai, R. Murugan, T. Premkumar, Ionics 25(10), 4637–4650 (2019). https://doi.org/10.1007/s11581-019-03018-0

    Article  CAS  Google Scholar 

  21. J.H. Kang, J.S. Chen, Diam. Relat. Mater. 88, 222–229 (2018). https://doi.org/10.1016/j.diamond.2018.07.015

    Article  CAS  Google Scholar 

  22. J.Y. Hong, J.J. Wie, Y. Xu, H.S. Park, Phys. Chem. Chem. Phys. 17(46), 30946–30962 (2015). https://doi.org/10.1039/C5CP04203H

    Article  CAS  Google Scholar 

  23. T. Tojo, K. Sakurai, H. Muramatsu, T. Hayashi, K.S. Yang, Y.C. Jung, C.M. Yang, M. Endo, Y.A. Kim, RSC Adv. 4(107), 62678–62683 (2014). https://doi.org/10.1039/C4RA10439K

    Article  CAS  Google Scholar 

  24. W. Kiciński, M. Szala, M. Bystrzejewski, Carbon 68, 1–32 (2014). https://doi.org/10.1016/j.carbon.2013.11.004

    Article  CAS  Google Scholar 

  25. Q. Li, J. Guo, J. Zhao, C. Wang, F. Yan, Nanoscale 11(2), 647–655 (2019). https://doi.org/10.1039/C8NR07220E

    Article  CAS  Google Scholar 

  26. C.P. Yang, Y.X. Yin, H. Ye, K.C. Jiang, J. Zhang, Y.G. Guo, A.C.S. Appl, Mater. Interfaces 6(11), 8789–8795 (2014). https://doi.org/10.1021/am501627f

    Article  CAS  Google Scholar 

  27. J. Tan, D. Li, Y. Liu, P. Zhang, Z. Qu, Y. Yan, H. Hu, H. Cheng, J. Zhang, M. Dong, C. Wang, J. Mater. Chem. A 8(16), 7980–7990 (2020). https://doi.org/10.1039/D0TA00284D

    Article  CAS  Google Scholar 

  28. H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 21, 3335–3345 (2011). https://doi.org/10.1039/C0JM02922J

    Article  CAS  Google Scholar 

  29. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, A. Matsuda, Mater. Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010

    Article  CAS  Google Scholar 

  30. S. Gao, Z. Ren, L. Wan, J. Zheng, P. Guo, Y. Zhou, Appl. Surf. Sci. 257, 7443–7446 (2011). https://doi.org/10.1016/j.apsusc.2011.02.135

    Article  CAS  Google Scholar 

  31. M. Sahoo, K.P. Sreena, B.P. Vinayan, S. Ramaprabhu, Mater. Res. Bull. 61, 383–390 (2015). https://doi.org/10.1016/j.materresbull.2014.10.049

    Article  CAS  Google Scholar 

  32. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Carbon 177, 304–331 (2021). https://doi.org/10.1016/j.carbon.2021.02.091

    Article  CAS  Google Scholar 

  33. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019). https://doi.org/10.1016/j.pecs.2019.100786

    Article  Google Scholar 

  34. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007

    Article  CAS  Google Scholar 

  35. A.K. Yadav, P. Singh, RSC Adv. 5(83), 67583–67609 (2015). https://doi.org/10.1039/C5RA13043C

    Article  CAS  Google Scholar 

  36. K. Mi, S. Chen, B. Xi, S. Kai, Y. Jiang, J. Feng, Y. Qian, S. Xiong, Adv. Func. Mater. 27(1), 1604265 (2017). https://doi.org/10.1002/adfm.201604265

    Article  CAS  Google Scholar 

  37. R. Palanisamy, D. Karuppiah, S. Rengapillai, G. Ramasamy, M. Abdollahifar, F.M. Wang, S. Marimuthu, JOM 72, 2260–2268 (2020). https://doi.org/10.1007/s11837-020-04165-w

    Article  CAS  Google Scholar 

  38. M. Xiang, Y. Wang, J. Wu, Y. Guo, H. Wu, Y. Zhang, H. Liu, Electrochim. Acta 227, 7–16 (2017). https://doi.org/10.1016/j.electacta.2016.11.139

    Article  CAS  Google Scholar 

  39. P. Shi, Y. Wang, X. Liang, Y. Sun, S. Cheng, C. Chen, H. Xiang, A.C.S. Sustain, Chem. Eng. 6(8), 9661–9670 (2018). https://doi.org/10.1021/acssuschemeng.8b00378

    Article  CAS  Google Scholar 

  40. Y. Tian, C. Deng, Z. Sun, Y. Zhao, T. Tan, F. Yin, X. Wang, Int. J. Electrochem. Sci. 13, 3441–3451 (2018). https://doi.org/10.20964/2018.04.37

    Article  CAS  Google Scholar 

  41. Y. Lu, S. Gu, J. Guo, K. Rui, C. Chen, S. Zhang, J. Jin, J. Yang, Z. Wen, A.C.S. Appl, Mater. Interfaces 9(17), 14878–14888 (2017). https://doi.org/10.1021/acsami.7b02142

    Article  CAS  Google Scholar 

  42. P. Rajkumar, K. Diwakar, R. Subadevi, R.M. Gnanamuthu, M. Sivakumar, Curr. Appl. Phys. 19(8), 902–909 (2019). https://doi.org/10.1016/j.cap.2019.05.001

    Article  Google Scholar 

  43. K. Krishnaveni, R. Subadevi, M. Raja, T. PremKumar, M. Sivakumar, J. Appl. Polym. Sci. 135(34), 46598 (2018). https://doi.org/10.1002/app.46598

    Article  CAS  Google Scholar 

  44. X.G. Sun, X. Wang, R.T. Mayes, S. Dai, Chemsuschem 5, 2079–2085 (2012). https://doi.org/10.1002/cssc.201200101

    Article  CAS  Google Scholar 

  45. Y. Chen, N. Liu, H. Shao, W. Wang, M. Gao, C. Li, H. Zhang, A. Wang, Y. Huang, J. Mater. Chem. A 3, 15235–15240 (2015). https://doi.org/10.1039/C5TA03032C

    Article  CAS  Google Scholar 

  46. Y.S. Su, Y. Fu, T. Cochell, A. Manthiram, Nat. Commun. 4, 2985 (2013). https://doi.org/10.1038/ncomms3985

    Article  CAS  Google Scholar 

  47. B. Zhang, C. Lai, Z. Zhou, X.P. Gao, Electrochim. Acta 54, 3708–3713 (2009). https://doi.org/10.1016/j.electacta.2009.01.056

    Article  CAS  Google Scholar 

  48. P. Rajkumar, K. Diwakar, K. Krishnaveni, G. Radhika, R. Subadevi, R.M. Gnanamuthu, F.-M. Wang, M. Sivakumar, J. Mater. Eng. Perform. 29, 2865–2870 (2020). https://doi.org/10.1007/s11665-020-04825-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors from Alagappa University acknowledge the financial support by DST-SERB, New Delhi under the Physical sciences, grant sanctioned vide EMR/2016/006302. Also, all the authors gratefully acknowledge for extending the analytical facilities in the Department of Physics, Alagappa University under the PURSE and FIST programme, sponsored by Department of Science and Technology (DST), Special Assistance Programme (SAP) sponsored by University Grants Commission (UGC), New Delhi, Govt. of India and Ministry of Human Resource Development RUSA- Phase 2.0 grant sanctioned vide Lt.No.F-24-51/2014 U Policy (TNMulti Gen), Dept. of Education, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Subadevi or M. Sivakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, P., Diwakar, K., Ramachandran, M. et al. Enriched energy storage capability and bi-functional ability of boron-doped graphene as efficient electrode for supercapacitors and lithium sulfur batteries. J Mater Sci: Mater Electron 32, 22760–22770 (2021). https://doi.org/10.1007/s10854-021-06650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06650-7

Navigation