Skip to main content
Log in

Synthesis and characterization of silica–lead sulfide core–shell nanospheres for applications in optoelectronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoscale miniaturization of chalcogenide semiconductors such as lead sulfide (galena) can generate interesting quantum confinement effects in the field of optoelectronic applications. In this work, we developed a process in order to obtain SiO2 nanospheres coated with Galena, as the denominated core–shell system; this process is based on Stöber’s method, where the magnetic stirring was replaced by an ultrasonic bath to achieve well rounded and highly stable silica nanoparticles with diameters average of 70 nm. The PbS shell cover presents a thickness of 10 nm around. The nanostructures’ chemical composition, morphology, and optical properties were determined by transmission electron microscopy and UV–Vis spectroscopy. As a result, the nanoshells correspond to cubic PbS, presenting some interplanar distances of 2.95 Å and 3.41 Å; this nanoshell also shown an optical spectrum shift toward blue and a remarkable increase of 3.75 eV in its band gap, compared with the PbS bulk value. The chemical composition is studied by energy scattering spectroscopy and X-ray photoelectron spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [A. K. Romero-Jaime], upon reasonable request.

References

  1. A.G.U. Perera, P.V.V. Jayaweera, G. Ariyawansa, S.G. Matsik, K. Tennakone, M. Buchanan, H.C. Liu, X.H. Su, P. Bhattacharya, Microelectron. J. 40, 507 (2009)

    Article  CAS  Google Scholar 

  2. K. Bolek, M. Urbański, Acta Phys. Pol. B Proc. Suppl. 11, 765 (2018)

    Article  Google Scholar 

  3. X. Zhu, B. Cheng, X. Li, J. Zhang, L. Zhang, Appl. Surf. Sci. 487, 32 (2019)

    Article  CAS  Google Scholar 

  4. H.W. Hillhouse, M.C. Beard, Curr. Opin. Colloid Interface Sci. 14, 245 (2009)

    Article  CAS  Google Scholar 

  5. A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010)

    Article  CAS  Google Scholar 

  6. I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J.C. Martins, G. Allan, Z. Hens, ACS Nano 3, 3023 (2009)

    Article  CAS  Google Scholar 

  7. T. Duan, W. Lou, X. Wang, Q. Xue, Colloids Surf. A 310, 86 (2007)

    Article  CAS  Google Scholar 

  8. S.F. Wang, F. Gu, M.K. Lü, Langmuir 22, 398 (2006)

    Article  Google Scholar 

  9. Y. Zhao, X. Liao, J. Hong, J. Zhu, Mater. Chem. Phys. 87, 149 (2004)

    Article  CAS  Google Scholar 

  10. I.A. Rahman, V. Padavettan, J. Nanomater. 2012, 15 (2012)

    Article  Google Scholar 

  11. R. Sato-Berrú, J.M. Saniger, J. Flores-Flores, M. Sanchez-Espíndola, J. Mater. Sci. Eng. A 3, 237 (2013)

    Google Scholar 

  12. M. Corricelli, N. Depalo, E. Di Carlo, E. Fanizza, V. Laquintana, N. Denora, A. Agostiano, M. Striccoli, M.L. Curri, Nanoscale 6(14), 7924 (2014)

    Article  CAS  Google Scholar 

  13. S.I. Sadovnikov, A.I. Gusev, J. Alloys Compd. 586, 105 (2014)

    Article  CAS  Google Scholar 

  14. R. Ghosh Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)

    Article  CAS  Google Scholar 

  15. J.S. Lee, E.V. Shevchenko, D.V. Talapin, J. Am. Chem. Soc. 130, 9673 (2008)

    Article  CAS  Google Scholar 

  16. R. He, X. You, J. Shao, F. Gao, B. Pan, D. Cui, Nanotechnology 18(31), 315601 (2007)

    Article  Google Scholar 

  17. C. Barth, S. Roder, D. Brodoceanu, T. Kraus, M. Hammerschmidt, S. Burger, C. Becker, Appl. Phys. Lett. 111, 1 (2017)

    Article  Google Scholar 

  18. D. Wang, A.L. Rogach, F. Caruso, Chem. Mater. 15, 2724 (2003)

    Article  CAS  Google Scholar 

  19. A. Diacon, E. Rusen, A. Mocanu, L.C. Nistor, J. Mater. Chem. C 1, 4350 (2013)

    Article  CAS  Google Scholar 

  20. M.D. Birowosuto, M. Takiguchi, A. Olivier, L.Y. Tobing, E. Kuramochi, A. Yokoo, W. Hong, M. Notomi, Opt. Commun. 383, 555 (2017)

    Article  CAS  Google Scholar 

  21. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Article  Google Scholar 

  22. R. Akbari, J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06133-9

    Article  Google Scholar 

  23. O. Ejeromedoghene, O. Oderinde, X. Ma et al., J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-06183-z

    Article  Google Scholar 

  24. R. Mohammadi-Aloucheh, A. Habibi-Yangjeh, A. Bayrami et al., J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9487-0

    Article  Google Scholar 

  25. N. Asiabani, G. Nabiyouni, S. Khaghani et al., J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-016-5635-6

    Article  Google Scholar 

  26. P.A. Ajibade, N.L. Botha, Results Phys. 6, 581 (2016)

    Article  Google Scholar 

  27. A.I. Kovalev, D.L. Wainstein, A.Y. Rashkovskiy, A. Osherov, Y. Golan, Surf. Interface Anal. 42, 850 (2010)

    Article  CAS  Google Scholar 

  28. E. Esakkiraj, K. Mohanraj, G. Sivakumar, J. Henry, Optik 126, 2133 (2015)

    Article  CAS  Google Scholar 

  29. E. Akbay, T.G. Ölmez, Mater. Lett. 215, 263 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACYT-México for the support through project 242943, 244797 and scholarship No. 722393. TEM experiments were conducted in the transmission electron microscopy of Universidad de Sonora.

Funding

This work was supported by CONACYT-México for the support through project 242943, 244797 and scholarship No. 722393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Romero-Jaime.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Jaime, A.K., Acosta-Enríquez, M.C., Vargas-Hernández, D. et al. Synthesis and characterization of silica–lead sulfide core–shell nanospheres for applications in optoelectronic devices. J Mater Sci: Mater Electron 32, 21425–21431 (2021). https://doi.org/10.1007/s10854-021-06648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06648-1

Navigation