Skip to main content

Advertisement

Log in

Dielectric and electrical energy storage properties of BiFeO3–BaTiO3–SrTiO3 ternary bulk ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, it is shown that the thin films of BiFeO3–BaTiO3–SrTiO3 have ultrahigh-energy storage density. However, the energy storage properties of BiFeO3–BaTiO3–SrTiO3 ternary bulk ceramics have not been studied. In this work, the BiFeO3–BaTiO3–SrTiO3 ceramics have been prepared by a conventional solid-state reaction method and the dielectric and electrical energy storage properties have been studied in detail. The ceramic with the composition of 0.25BiFeO3–0.30BaTiO3–0.45SrTiO3 is experimental evidenced to be the best with the highest dielectric permittivity in the ternary system. To suppress the dielectric loss and leakage current, 0.25BiFeO3–0.30BaTiO3–0.45SrTiO3 has been doped with Mn. Mn-doped ceramics have the same perovskite structure but the fine grains are formed and the number of pores decreases. Mn-doping reduces dielectric loss, enlarges the thermally stable zone of the dielectric, and improves the electrical energy storage density simultaneously. 2 mol% Mn-doped 0.25BiFeO3–0.30BaTiO3–0.45SrTiO3 has the most optimized electrical energy storage properties. The energy storage density is 1.33 J/cm3 and the efficiency is 88.5% at 185 kV/cm. The discharge energy density is 2.7 times that of undoped 0.25BiFeO3–0.30BaTiO3–0.45SrTiO3 and 90% stored energy can release in 120 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. H. Liu, B. Dkhil, J. Mater. Sci. 52, 6074 (2017)

    Article  CAS  Google Scholar 

  2. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Mater. Res. Bull. 113, 190 (2019)

    Article  CAS  Google Scholar 

  3. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog. Mater Sci. 102, 72 (2019)

    Article  CAS  Google Scholar 

  4. A. Zeb, S.J. Milne, J. Mater. Sci.: Mater. Electron. 26, 9243 (2015)

    CAS  Google Scholar 

  5. X. Wu, H. Liu, J. Chen, J. Mater. Res. (2021). https://doi.org/10.1557/s43578-020-00089-y

    Article  Google Scholar 

  6. Z. Xie, H. Liu, Ceram. Int. 46, 6955 (2020)

    Article  CAS  Google Scholar 

  7. H. Liu, B. Dkhil, Z. Krystallog. 226, 163 (2011)

    Article  CAS  Google Scholar 

  8. H. Liu, X. Yang, Ferroelectrics 500, 310 (2016)

    Article  CAS  Google Scholar 

  9. L. Li, H. Liu, G. Wen, G. Liu, Ceram. Int. 44, S69 (2018)

    Article  CAS  Google Scholar 

  10. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96, 2699 (2013)

    Article  CAS  Google Scholar 

  11. H. Liu, Ceram. Int. 46, 8255 (2020)

    Article  CAS  Google Scholar 

  12. H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan, Y. Zheng, J. Ma, L. Gu, Y. Shen, P. Yu, S. Zhang, L.-Q. Chen, Y.-H. Lin, C.-W. Nan, Science 365, 578 (2019)

    Article  CAS  Google Scholar 

  13. Y. Shi, F. Yan, X. He, K. Zhu, G. Li, X. Dong, B. Shen, J. Zhai, CrystEngComm 23, 1596 (2021)

    Article  CAS  Google Scholar 

  14. F. Kang, L. Zhang, B. Huang, P. Mao, Z. Wang, Q. Sun, J. Wang, D. Hu, J. Eur. Ceram. Soc. 40, 1198 (2020)

    Article  CAS  Google Scholar 

  15. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  CAS  Google Scholar 

  16. J. Chen, J. Cheng, J. Guo, Z. Cheng, J. Wang, H. Liu, S. Zhang, J. Am. Ceram. Soc. 103, 374 (2020)

    Article  CAS  Google Scholar 

  17. M. Makarovic, A. Bencan, J. Walker, B. Malic, T. Rojac, J. Eur. Ceram. Soc. 39, 3693 (2019)

    Article  CAS  Google Scholar 

  18. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  CAS  Google Scholar 

  19. Y. Xu, H. Liu, J. Mater. Sci.: Mater. Electron. 31, 5221 (2020)

    CAS  Google Scholar 

  20. H. Liu, Ceram. Int. 45, 10380 (2019)

    Article  CAS  Google Scholar 

  21. Y. Ren, H. Liu, F. Liu, G. Liu, J. Alloy. Compd. 877, 160239 (2021)

    Article  CAS  Google Scholar 

  22. C. Neusel, G.A. Schneider, J. Mech. Phys. Solids 63, 201 (2014)

    Article  Google Scholar 

  23. D. Jiang, Y. Zhong, F. Shang, G. Chen, J. Mater. Sci.: Mater. Electron. 31, 12074 (2020)

    CAS  Google Scholar 

  24. J. Wei, D. Jiang, W. Yu, F. Shang, G. Chen, Ceram. Int. 47, 11581 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant Nos. 11704242; 21703138; 51672226) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1447200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Liu or Gang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, H., Liu, F. et al. Dielectric and electrical energy storage properties of BiFeO3–BaTiO3–SrTiO3 ternary bulk ceramics. J Mater Sci: Mater Electron 32, 21188–21196 (2021). https://doi.org/10.1007/s10854-021-06618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06618-7

Navigation