Skip to main content

Advertisement

Log in

Enhanced energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.9O3—8%BiFeO3 ceramics by doping of Mg ions and Ti ions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Energy storage ceramics are important materials used in dielectric energy storage capacitors, which have a large dielectric constant, low dielectric loss, and good temperature stability. It has a promising application in high temperature-resistant dielectric pulse power systems. This study uses the sol–gel method to prepare Ba0.85Ca0.15Zr0.1Ti0.9O3 (abbreviated as BCZT) precursor powder, and then uses the solid phase method to prepare Ba0.85Ca0.15Zr0.1Ti0.9O3-8%BiFe1-x(Mg0.5Ti0.5)xO3 (abbreviated as BCZT-BFMT, x = 0, 15, 50 and 100%). The effects of different doping amounts of Mg ions and Ti ions on the energy storage performance of BCZT-BFMT ceramics were systematically investigated. The results show that all samples with different compositions show pure phase and dense microstructures, and the sample with x = 50% has better dielectric properties. When the doping content is 50%, the energy storage density of the sample is 0.73 J/cm3 under the breakdown electric field of 108 kV/cm, which is significantly improved compared with the pure BCZT-BF sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5) O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43(12), 9060–9066 (2017). https://doi.org/10.1016/j.ceramint.2017.04.051

    Article  Google Scholar 

  2. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, J. Jones, Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94(12), 4382–4386 (2011). https://doi.org/10.1111/j.1551-2916.2011.04731.x

    Article  Google Scholar 

  3. Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, G. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02 (Zr0.58Sn0.335Ti0.085) O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4923373

    Article  Google Scholar 

  4. G. Zhang, D. Zhu, X. Zhang, L. Zhang, J. Yi, B. Xie, Y. Zeng, Q. Li, Q. Wang, S. Jiang, S. Zhang, High-energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.68Sn0.24Ti0.08) O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 98(4), 1175–1181 (2015). https://doi.org/10.1111/jace.13412

    Article  Google Scholar 

  5. H.L. Du, Z.T. Yang, F. Gao, Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater. Beijing 33(10), 1046–1058 (2018)

    Article  Google Scholar 

  6. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43(13), 9593–9599 (2017). https://doi.org/10.1016/j.ceramint.2017.03.139

    Article  Google Scholar 

  7. Z. Hanani, D. Mezzane, M.B. Amjoud, Y. Gagou, K. Hoummada, C. Perrin, A.G. Razumnaya, Z. Kutnjak, A. Bouzina, M.E. Marssi, M. Gouné, B. Rožič, Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J. Mater. Sci. Mater. Electron. 31(13), 10096–10104 (2020). https://doi.org/10.1007/s10854-020-03555-9

    Article  Google Scholar 

  8. S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44(7), 2267–2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020

    Article  Google Scholar 

  9. X.W. Wang, B.H. Zhang, L.X. Shi, L.Y. Sun, M.M. Yang, Y.C. Hu, X.E. Wang, Dielectric relaxation behavior and energy storage properties in Ba1-x(Bi0.5K0.5)xTi0.85Zr0.15O3 ceramics. J. Alloy. Compd. 789, 983–990 (2019). https://doi.org/10.1016/j.jallcom.2019.03.126

    Article  Google Scholar 

  10. L. Jin, F. Li, S. Zhang, D.J. Green, Decoding the Fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014). https://doi.org/10.1111/jace.12773

    Article  Google Scholar 

  11. N. Horchidan, A.C. Ianculescu, C.A. Vasilescu, M. Deluca, V. Musteata, H. Ursic, R. Frunza, B. Malic, L. Mitoseriu, Multiscale study of ferroelectric–relaxor crossover in BaSnxTi1−xO3 ceramics. J. Eur. Ceram. Soc. 34(15), 3661–3674 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.005

    Article  Google Scholar 

  12. H. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloy. Compd. 720, 116–125 (2017). https://doi.org/10.1016/j.jallcom.2017.05.158

    Article  Google Scholar 

  13. Y.P. Zheng, Y.C. Shi, Z.Y. Ren, B.H. Zhang, J. Feng, H.N. Li, S.T. Dang, F. Yang, J. Shang, S.Q. Yin, Y.C. Hu, Z.Y. Gao, X.W. Wang, Preparation and electrical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics by the doping of Mn ions. Phys. B Condens. Matter (2022). https://doi.org/10.1016/j.physb.2022.414140

    Article  Google Scholar 

  14. M.D. Li, X.G. Tang, S.M. Zeng, Q.X. Liu, Y.P. Jiang, W.H. Li, Giant electrocaloric effect in BaTiO3–Bi(Mg1/2Ti1/2) O3 lead-free ferroelectric ceramics. J. Alloy. Compd. 747, 1053–1061 (2018). https://doi.org/10.1016/j.jallcom.2018.03.102

    Article  Google Scholar 

  15. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2) O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104264

    Article  Google Scholar 

  16. W.B. Li, D. Zhou, R. Xu, L.X. Pang, I.M. Reaney, BaTiO3–Bi (Li0.5Ta0.5) O3, lead-free ceramics, and multilayers with high energy storage density and efficiency. ACS Appl.Energy Mater. 1(9), 5016–5023 (2018). https://doi.org/10.1021/acsaem.8b01001

    Article  Google Scholar 

  17. G. Liu, Y. Li, M. Shi, L. Yu, P. Chen, K. Yu, Y. Yan, L. Jin, D. Wang, J. Gao, An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3) O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram. Int. 45(15), 19189–19196 (2019). https://doi.org/10.1016/j.ceramint.2019.06.166

    Article  Google Scholar 

  18. Q. Wang, P.M. Gong, C.M. Wang, High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3–Bi(Zn1/2Zr1/2)O3 relaxor ferroelectrics. Ceram. Int. 46(14), 22452–22459 (2020). https://doi.org/10.1016/j.ceramint.2020.06.003

    Article  Google Scholar 

  19. D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, D.W. Johnson, High energy density, high temperature capacitors utilizing Mn-Doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95(4), 1348–1355 (2012)

    Article  Google Scholar 

  20. J. Shukla, S. Bisen, M. Khan, A. Mishra, Ba/Zr Co-substituted h-YMnO3 manganite: study of its structural, optical and electrical properties. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-04913-y

    Article  Google Scholar 

  21. M. Ajili, B. Louati, Studies on structural, Optical and electrical properties of K2Ba3(P2O7)2. Phys. A Mater. Sci. Process. (2022). https://doi.org/10.1007/s00339-021-05200-6

    Article  Google Scholar 

  22. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). https://doi.org/10.1038/nnano.2010.89

    Article  ADS  Google Scholar 

  23. L. Singh, U.S. Rai, K.D. Mandal, A.K. Rai, Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic. Appl. Phys. A Mater. Sci. Process. 112(4), 891–900 (2013). https://doi.org/10.1007/s00339-012-7443-z

    Article  ADS  Google Scholar 

  24. C. Chandrakala, A.S.S. Reddy, J. Jedryka, V.R. Kumar, G.N. Raju, N. Venkatramaiah, V.R. Kumar, G. Lakshminarayana, N. Veeraiah, Third-order nonlinear optical features of zirconia-added lead silicate glass ceramics embedded with Pb2Fe2O5 perovskite crystal phases and role of Fe ions. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-03570-x

    Article  Google Scholar 

  25. J.M.B. Silva, J.P.B. Silva, K.C. Sekhar, M. Pereira, M.J.M. Gomes, Impact of the ferroelectric layer thickness on the resistive switching characteristics of ferroelectric/dielectric structures. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5047853

    Article  Google Scholar 

  26. X.W. Wang, B.H. Zhang, G. Feng, L.Y. Sun, Y.C. Hu, S.Y. Shang, S.Q. Yin, J. Shang, X.E. Wang, Enhanced energy storage performance of Ba0.94 (Bi0.5K0.5)0.06Ti0.85Zr0.15O3 relaxor ceramics by two-step sintering method. Mater. Res. Bull. 114, 74–79 (2019). https://doi.org/10.1016/j.materresbull.2019.02.004

    Article  Google Scholar 

  27. Y. Li, Z. Cui, R. Sang, Z. Li, X. Ma, H. Su, Microstructure and dielectric properties of yttrium-doped BaSn0.05Ti0.95O3 ceramics. J. Electron. Mater. 45(10), 5206–5212 (2016). https://doi.org/10.1007/s11664-016-4674-3

    Article  ADS  Google Scholar 

  28. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  ADS  Google Scholar 

  29. B.J. Rodriguez, S. Jesse, A.N. Morozovska, S.V. Svechnikov, D.A. Kiselev, A.L. Kholkin, A.A. Bokov, Z.G. Ye, S.V. Kalinin, Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3474961

    Article  Google Scholar 

  30. J. Hao, W. Bai, W. Li, J. Zhai, C. Randall, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15) (Zr0.1Ti0.9) O3 Lead Free piezoelectric ceramics. J. Am. Ceram. Soc. 95(6), 1998–2006 (2012)

    Article  Google Scholar 

  31. Z. Li, H. Fan, J. Wang, S. Jia, Diffusion phase transition and aging properties induced by B-site disorder in Na-doped barium strontium titanium ceramics. J. Mater. Sci. Mater. Electron. 25(12), 5581–5592 (2014). https://doi.org/10.1007/s10854-014-2347-7

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Nos. 51402091, 61901161), the Scientific Research Project in Henan Normal University (No. 20210376), the National University Student Innovation Program (No. 202010476023), and the University Student Innovation Program in Henan Normal University (Nos. 20200208, 20200209, 20200212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S.Q., Feng, J., Zheng, Y.P. et al. Enhanced energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.9O3—8%BiFeO3 ceramics by doping of Mg ions and Ti ions. Appl. Phys. A 128, 991 (2022). https://doi.org/10.1007/s00339-022-06146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06146-z

Keywords

Navigation