Skip to main content
Log in

Influence of mechanical alloying on structural, thermal, and magnetic properties of Fe50Ni10Co10Ti10B20 high entropy soft magnetic alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A multicomponent with functional Fe50Ni10Co10Ti10B20 (at.%) high entropy soft magnetic alloy powders were produced from the elemental powders by mechanical alloying (MA). The MA processes were carried out under argon gas atmosphere at a speed of 250 rpm, carrying milling and rest in every 20-min period to prevent the mixture from overheating. Scanning electron microscopy and energy-dispersive X-ray spectroscopy, X-ray diffraction, differential thermal analysis, and vibrating sample magnetometer analysis were utilized to characterize various powdered samples with respect to MA time (050 h). The results show that in the first 2.5 h of MA, the mixture of crystalline phases transformed into a nanocrystalline supersaturated α-Fe solid solution phase. With prolonging milling time, the amorphous phase appeared after 20 h of MA. In the final stage of MA (50 h), the saturation magnetization (Ms) and the coercivity (Hc) were 89.7 emu/g and 32.5 Oe, respectively, proposing the alloy as a very good high entropy soft magnet in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Ma, S. Liu, W. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao, Y. Wang, Research progress of titanium-based high entropy alloy: methods, properties, and applications. Front Bioeng Biotechnol 8(1–18), 603522 (2020)

    Article  Google Scholar 

  2. S. Gorsse, J.-P. Couzinié, D.B. Miracle, From high-entropy alloys to complex concentrated alloys. C. R. Physique 19, 721–736 (2018)

    Article  CAS  Google Scholar 

  3. B. Avar, T. Simsek, S. Ozcanc, A.K. Chattopadhyay, B. Kalkan, Structural stability of mechanically alloyed amorphous (FeCoNi)70Ti10B20 under high-temperature and high-pressure. J. Alloys Compds. 860(1–9), 158528 (2020)

    Google Scholar 

  4. N. Birbilis, S. Choudhary, J.R. Scully, M.L. Taheri, A perspective on corrosion of multi-principal element alloys. Npj Mater. Degrad. 5(1–14), 14 (2021)

    Article  CAS  Google Scholar 

  5. Y. Yin, J. Zhang, Q. Tan, W. Zhuang, N. Mo, M. Bermingham, M.-X. Zhang, Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility. Mater. Des. 162, 24–33 (2019)

    Article  CAS  Google Scholar 

  6. L. Sang, Y. Xu, Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by mechanical alloying. J. Non-Cryst. Solids 530(1–7), 119854 (2020)

    Article  CAS  Google Scholar 

  7. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Article  CAS  Google Scholar 

  8. M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014)

    Article  Google Scholar 

  9. S.Y. Lee, S. Byeon, H.S. Kim, H. Jin, S. Lee, Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and explanation. Mater. Des. 197(1–16), 109260 (2021)

    Article  CAS  Google Scholar 

  10. G.J. Naz, D. Dong, Y. Geng, Y. Wang, C. Dong, Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dualcluster model of binary eutectic. Sci. Rep. 7(1–11), 9150 (2017)

    Article  Google Scholar 

  11. Z.-Q. Zhang, K.-K. Song, S. Guo, Q.-S. Xue, H. Xing, C.-D. Cao, F.-P. Dai, B. Völker, A. Hohenwarter, T. Maity, N. Chawake, J.-T. Kim, L. Wang, I. Kaban, J. Eckert, Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition. Sci. Rep. 9(1–14), 360 (2019)

    Article  Google Scholar 

  12. Y. Zhang, M. Zhang, D. Li, T. Zuo, K. Zhou, M.C. Gao, B. Sun, T. Shen, Compositional design of soft magnetic high entropy alloys by minimizing magnetostriction coefficient in (Fe0.3Co0.5Ni0.2)100–x(Al1/3Si2/3)x system. Metals 9(1–12), 382 (2019)

    Article  CAS  Google Scholar 

  13. M.E. McHenry, M.A. Willard, D.E. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999)

    Article  CAS  Google Scholar 

  14. A. Inoue, T. Zhang, H. Koshiba, A. Makino, New bulk amorphous Fe–(Co, Ni)–M–B (M=Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties. J. Appl. Phys. 83, 6326–6328 (1998)

    Article  CAS  Google Scholar 

  15. W. Li, P. Liu, P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: a review. Mater. Res. Lett. 6(4), 199–229 (2018)

    Article  CAS  Google Scholar 

  16. H. Raanaei, V. Mohammad-Hosseini, Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co–Ni)70Ti10B20 alloyed powders. J. Magn. Magn. Mater. 414, 90–96 (2016)

    Article  CAS  Google Scholar 

  17. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  18. T. Simsek, B. Avar, S. Ozcan, A.K. Chattopadhyay, B. Kalkan, Solid-state synthesis and characterization of the stable nanostructured Ni21Ti2B6 phase. Phys. Status Solidi B 258(5), 2000571 (2021)

    Article  CAS  Google Scholar 

  19. C. Suryanarayana, E. Ivanov, in Advances in Powder Metallurgy: Properties, Processing and Applications, ed. by I. Chang, Y. Zhao (Woodhead Publishing, Cambridge, 2013), p. 42

    Google Scholar 

  20. S. G. Sarwat, Contamination in wet-ball milling. Powder Metall. 60(4), 267–272 (2017)

    Article  CAS  Google Scholar 

  21. F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, J.G. Wang, Y. Yang, Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4(1–20), 100027 (2019)

    Article  Google Scholar 

  22. G. Herzer, Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013)

    Article  CAS  Google Scholar 

  23. K. Suzuki, G. Herzer, in Advanced Magnetic Nanostructures, ed. by D.J. Sellmyer, R. Skomski (Springer, Boston, 2006), p. 365

    Google Scholar 

  24. Y. Xu, Y. Sun, X. Dai, B. Liao, S. Zhou, D. Chen, Microstructure and magnetic properties of amorphous/nanocrystalline Ti50Fe50 alloys prepared by mechanical alloying. J. Mater. Res. Technol. 8(3), 2486–2493 (2019)

    Article  CAS  Google Scholar 

  25. R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban, Preparation of nanocrystalline Fe-Ni powders by mechanical alloying used in soft magnetic composites. J. Magn. Magn. Mater. 320, 1089–1094 (2008)

    Article  CAS  Google Scholar 

  26. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  CAS  Google Scholar 

  27. H. Shokrollahi, The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying. Mater. Des. 30, 3374–3387 (2009)

    Article  CAS  Google Scholar 

  28. A.H. Bahrami, H. Ghayour, S. Sharafi, Evolution of microstructural and magnetic properties of mechanically alloyed Fe80−xNi20Six nanostructured powders. Powder Technol. 249, 7–14 (2013)

    Article  CAS  Google Scholar 

  29. X. Wang, Q. Liu, Y. Huang, L. Xie, Q. Xu, T. Zhao, Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding. Materials 13(4–13), 2209 (2020)

    Article  CAS  Google Scholar 

  30. S. Ma, J. Zhang, Wear resistant high boron cast alloy—a review. Rev. Adv. Mater. Sci. 44, 54–62 (2016)

    CAS  Google Scholar 

  31. L. Zong, N. Guo, R. Li, H. Yu, Effect of B content on microstructure and wear resistance of Fe-3Ti-4C hardfacing alloys produced by plasma-transferred arc welding. Coatings 9(2–11), 265 (2019)

    Article  CAS  Google Scholar 

  32. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shi, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. J. Electrochem. Soc. 154(8), C424–C430 (2007)

    Article  CAS  Google Scholar 

  33. A.N. Faruqui, P. Manikandan, T. Sato, Y. Mitsuno, K. Hokamoto, Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation. Met. Mater. Int. 18, 157–163 (2012)

    Article  CAS  Google Scholar 

  34. Y.J. Liu, I.T.H. Chang, Effects of oxide phases on thermomagnetisation of mechanically alloyed amorphous Fe–(Co, Ni)–Zr–B powder. Mater. Sci. Eng. A 375–377, 1092–1096 (2004)

    Article  Google Scholar 

  35. N.D. Phu, D.T. Ngo, L.H. Hoang, N.H. Luong, N.H. Hai, Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J. Phys. D 44(34), 345002 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Projects Coordination Unit of Zonguldak Bülent Ecevit University, Project No. 2015-73338635-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Avar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahi, M., Avar, B. Influence of mechanical alloying on structural, thermal, and magnetic properties of Fe50Ni10Co10Ti10B20 high entropy soft magnetic alloy. J Mater Sci: Mater Electron 32, 21124–21134 (2021). https://doi.org/10.1007/s10854-021-06612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06612-z

Navigation