Skip to main content
Log in

Interfacial charge transport of Ag2+-decorated CuI thin film for solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we prepared CuI film by spray pyrolysis technique, and Ag nanoparticles decorated CuI thin film by photoreduction method, surface modified approach for improving the interfacial charge transfer property and work function of hole transport layer (HTL) in Perovskite Solar Cell (PSC). The concentration of the Ag was investigated by immersing the CuI thin film in the Ag solution at time intervals. The crystalline property and vibration spectra of the as-fabricated thin film were examined by an X-ray diffraction pattern (XRD) and Raman Spectroscopy. The work function of the as-fabricated thin film was analyzed by Contact Potential Difference (CPD) method as a result of Scanning Kelvin Probe (SKP). The charge transfer resistance of the working electrodes was studied, and the least dipping time sample shows the low charge transfer resistance (36.35 Ω) and less relaxation time (0.19 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Feng, M. Wang, H. Zhou, W. Li, X. Xie, S. Wang, Z. Zang, S. Chen, Optoelectronic modulation of undoped NiOx films for inverted perovskite solar cells via intrinsic defect regulation. ACS Appl. Energy Mater. 3(10), 9732–9741 (2020)

    Article  CAS  Google Scholar 

  2. X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang, L. Han, Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13(11), 3823–3847 (2020)

    Article  CAS  Google Scholar 

  3. M. Bidikoudi, E. Kymakis, Novel approaches and scalability prospects of copper-based hole transporting materials for planar perovskite solar cells. J. Mater. Chem. C 7(44), 13680–13708 (2019)

    Article  CAS  Google Scholar 

  4. S. Chatterjee, A.J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120(3), 1428–1437 (2016)

    Article  CAS  Google Scholar 

  5. J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014)

    Article  CAS  Google Scholar 

  6. X. Li, J. Yang, Q. Jiang, W. Chu, D. Zhang, Z. Zhou, J. Xin, Synergistic effect to high-performance perovskite solar cells with reduced hysteresis and improved stability by the introduction of Na-treated TiO2 and spraying-deposited CuI as transport layers. ACS Appl. Mater. Interfaces 9(47), 41354–41362 (2017)

    Article  CAS  Google Scholar 

  7. Y. Wei, J. Kong, L. Yang, L. Ke, H.R. Tan, H. Liu, Y. Huang, X.W. Sun, X. Lu, H. Du, Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J. Mater. Chem. A 1(16), 5045–5052 (2013)

    Article  CAS  Google Scholar 

  8. M. Michalska, A. Iwan, M. Andrzejczuk, A. Roguska, A. Sikora, B. Boharewicz, I. Tazbir, A. Hreniak, S. Popłoński, K.P. Korona, Analysis of the surface decoration of TiO2 grains using silver nanoparticles obtained by ultrasonochemical synthesis towards organic photovoltaics. New J. Chem. 42(9), 7340–7354 (2018)

    Article  CAS  Google Scholar 

  9. H. Ran, J. Fan, X. Zhang, J. Mao, G. Shao, Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Appl. Surf. Sci. 430, 415–423 (2018)

    Article  CAS  Google Scholar 

  10. H. Zhao, F. Huang, J. Hou, Z. Liu, Q. Wu, H. Cao, Q. Jing, S. Peng, G. Cao, Efficiency enhancement of quantum dot sensitized TiO2/ZnO nanorod arrays solar cells by plasmonic Ag nanoparticles. ACS Appl. Mater. Interfaces 8(40), 26675–26682 (2016)

    Article  CAS  Google Scholar 

  11. I. Iwantono, S.K. Saad, F. Anggelina, A. Awitdrus, M.A. Ramli, A.A. Umar, Enhanced charge transfer activity in Au nanoparticles decorated ZnO nanorods photoanode. Phys. E. 111, 44–50 (2019)

    Article  CAS  Google Scholar 

  12. A. Singh, A. Dey, P.K. Iyer, Collective effect of hybrid Au-Ag nanoparticles and organic-inorganic cathode interfacial layers for high performance polymer solar cell. Sol. Energy 173, 429–436 (2018)

    Article  CAS  Google Scholar 

  13. P.S. Murthy, V.P. Venugopalan, D.D. Arunya, S. Dhara, R. Pandiyan, A.K. Tyagi, Antibiofilm activity of nano sized CuO, in International conference on nanoscience, engineering and technology (ICONSET 2011). (IEEE, Piscataway, 2011), pp. 580–583

    Chapter  Google Scholar 

  14. B. Yang, Z. Liu, Z. Guo, W. Zhang, M. Wan, X. Qin, H. Zhong, In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Appl. Surf. Sci. 316, 22–27 (2014)

    Article  CAS  Google Scholar 

  15. R. Chuaysong. Electrochemical properties of copper (I) halides and substituted thiourea complexes. PhD diss., 2007

  16. M.Z. Nasir, M. Pumera, Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10–107 nm. Phys. Chem. Chem. Phys. 18(40), 28183–28188 (2016)

    Article  CAS  Google Scholar 

  17. D.K. Kaushik, M. Selvaraj, S. Ramu, A. Subrahmanyam, Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties. Sol. Energy Mater. Sol. Cells 165, 52–58 (2017)

    Article  CAS  Google Scholar 

  18. A. Murali, H.Y. Sohn, Photocatalytic properties of plasma-synthesized aluminum-doped zinc oxide nanopowder. J. Nanosci. Nanotechnol. 19(8), 4377–4386 (2019)

    Article  CAS  Google Scholar 

  19. R. Narayanan, M. Deepa, A.K. Srivastava, Förster resonance energy transfer and carbon dots enhance light harvesting in a solid-state quantum dot solar cell. J. Mater. Chem. A 1(12), 3907–3918 (2013)

    Article  CAS  Google Scholar 

  20. V. Paulraj, K. Vediappan, K.K. Bharathi, Phase-surface enabled electrochemical properties and room temperature work function of LiNi1/3Mn1/3Co1/3O2 cathode thin films. Chem. Phys. Lett. 761, 138074 (2020)

    Article  CAS  Google Scholar 

  21. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010)

    Article  CAS  Google Scholar 

  22. I.D. Baikie, U. Peterman, B. Lägel, K. Dirscherl, Study of high-and low-work-function surfaces for hyperthermal surface ionization using an absolute Kelvin probe. J. Vac. Sci. Technol. A 19(4), 1460–1466 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. V. Ganesh and Dr. S. Yuvaraj for EIS and KPM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Harish or M. Navaneethan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, K., Prabakaran, S., Harish, S. et al. Interfacial charge transport of Ag2+-decorated CuI thin film for solar cell application. J Mater Sci: Mater Electron 33, 8586–8593 (2022). https://doi.org/10.1007/s10854-021-06578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06578-y

Navigation