Skip to main content
Log in

Deposition and characterization of CuI thin film as hole transporting layer for perovskite solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Inorganic CuI thin films were grown using e-beam evaporation to substitute expensive organic hole transporting layer (HTL) material used in perovskite solar cells (PSCs). CuI powder was e-beam evaporated at 25 W for 5 and 10 min to yield 100 nm film on glass substrate and 200 nm film on perovskite layer, respectively. X-ray diffraction pattern of CuI thin film showed a single peak at 26.04°, corresponding to (111) plane of crystalline gamma (γ) phase. Scanning electron microscopy imaging revealed the nanostructured thin film. A bandgap of 3.1 eV was calculated by absorption curves of CuI thin film. The deposited CuI thin film on glass substrate showed a transmittance of 75% in the visible region. X-ray and ultraviolet photoemission spectroscopy data revealed that the films were slightly Cu deficient and p-type nature, respectively. PSC with a device architecture of glass/ITO/c-TiO2/m-TiO2/CH3NH3SnI3/CuI/Au was fabricated. CuI thin film is a promising alternative HTL for organic material in the improvement of PSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Miyake S, Hoshino S and Takenaka T 1952 J. Phys. Soc. Jpn. 7 19

    Article  CAS  Google Scholar 

  2. Bührer W and Hälg W 1977 Electrochim. Acta 22 701

    Article  Google Scholar 

  3. Zheng-Johansson J X M, Ebbsjö I and McGreevy R L 1995 Solid State Ion. 82 115

    Article  CAS  Google Scholar 

  4. Zheng-Johansson J X M and McGreevy R L 1996 Solid State Ion. 83 35

    Article  CAS  Google Scholar 

  5. Luhanga P V C, Muiva C, Coetzee S H, Maabong K, Tiedt L and Monowe P 2016 J. Optoelectron. Adv. Mater. 18 837

    CAS  Google Scholar 

  6. Christians J A, Fung R C M and Kamat P V J 2014 Am. Chem. Soc. 136 758

    Article  CAS  Google Scholar 

  7. Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H et al. 2014 Am. Chem. Soc. 136 622

    Article  CAS  Google Scholar 

  8. Huangfu M, Shen Y, Zhu G, Xu K, Cao M, Gu F et al. 2015 Appl. Surf. Sci. 357 2234

    Article  CAS  Google Scholar 

  9. Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U et al. 2015 Adv. Funct. Mater. 25 5650

    Article  CAS  Google Scholar 

  10. Uthayaraj S, Karunarathne D G B C, Kumara G R A, Murugathas T, Rasalingam S, Rajapakse R M G et al. 2019 Mater. 12 2037

    Article  CAS  Google Scholar 

  11. Cao J, Wu B, Peng J, Xiaoxia Feng, Li C and Tang Y 2019 Sci. China Chem. 62 363

  12. Muhamad N A, Azman M A, Noor U M and Mahmood M R 2012 Adv. Mater. Res. 403–408 451

    Google Scholar 

  13. Johan M R, Si-Wen K, Hawari N and Aznan N A K 2012 Int. J. Electrochem. Sci. 7 4942

    CAS  Google Scholar 

  14. Ezealigo B N, Nwanya A C, Simo A, Osuji R U, Bucher R, Maaza M et al. 2019 Arab. J. Chem. 12 5380

    Article  CAS  Google Scholar 

  15. Ito S, Kanaya S, Nishino H, Umeyama T and Imahori H 2015 Photonics 2 1043

    Article  CAS  Google Scholar 

  16. Coroa J, Faustino B M M, Marques A, Bianchi C, Koskinen T, Juntunen T et al. 2019 RSC Adv. 9 35384

    Article  CAS  Google Scholar 

  17. Wang H, Yu Z, Jiang X, Li J, Cai B, Yang X et al. 2005 Energy Technol. 5 1836

    Article  Google Scholar 

  18. Faustino B M M, Gomes D, Faria J, Juntunen T, Gaspar G, Bianchi C et al. 2018 Sci. Rep. 8 6867

    Article  Google Scholar 

  19. Yang C, Kneiβ M, Lorenz M and Grundmann M 2016 PNAS 113 12929

    Article  CAS  Google Scholar 

  20. Bruno Miguel M F, Diogo G, Jaime F, Taneli J, Guilherme G, Catarina B et al. 2018 Sci. Rep. 8 6867

    Article  Google Scholar 

  21. Cullity B D and Stock S R 2001 Elements of X-ray diffraction (New York; Prentice-Hall)

  22. Cota-Leal M, Cabrera-German D, Sotelo-Lerma M et al. 2019 Mater. Sci. Semicond. Process. 95 59

    Article  CAS  Google Scholar 

  23. Muhamad N A, Azman M A and Mahmood M R 2012 Adv. Mater. Res. 364 417

    Google Scholar 

  24. Karthik Kumar C, Vengatesh P, Durai G, Ajith Kumar S, Kuppusami P and Shyju Thankaraj S 2019 Prog. Nat. Sci. Mater. Int. 29 533

    Article  Google Scholar 

  25. Liu A, Zhu H, Park W T, Kang S J, Xu Y, Kim M G et al. 2018 Adv. Mater. 30 1802379

    Article  Google Scholar 

  26. Lee S, Lee H J, Ji Y, Choi S M, Lee K H and Hong K J 2020 Mater. Chem. C 28 9608

    Article  Google Scholar 

  27. Bouhafs B, Heireche H, Sekkal W, Aourag H and Certier M 1998 Phys. Lett. A 240 257

    Article  CAS  Google Scholar 

  28. Sekkal W and Zaoui A 2002 Phys. B 315 201

    Article  CAS  Google Scholar 

  29. Babu B J, Gangadhar K, Bhargavi M, Saha D, George P P, Victor Vedanayakam S et al. 2021 Mater. Today Proc. 45 3886

    Article  Google Scholar 

  30. Usha Mandadapu M, Victor Vedanayakam S, Thyagarajan K and Babu B J 2018 Int. J. Simul. Process Model. 13 221

    Article  Google Scholar 

  31. Usha Mandadapu M, Victor Vedanayakam S, Thyagarajan K, Raja Reddy M and Babu B J 2017 Int. J. Renew. Energy Res. 7 1603

    Google Scholar 

  32. Takahashi K and Suzuki Y 2017 Jpn. J. Appl. Phys. 56 0804

    Article  Google Scholar 

  33. Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G 2014 Nat. Photon. 8 489

    Article  CAS  Google Scholar 

  34. Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A et al. 2014 Energy Environ. Sci. 7 3061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jagadeesh Babu Bellam and V K Verma admit the financial support by DST under Science and Engineering Research Board ECRA Projects ECR/2017/000633 and ECR/2016/001741, respectively. We also thank the Department of Chemistry, MITS, Madanapalle, for providing UV-visible spectroscopy. Optical profilometer and four-probe measurements were performed at CeNSE, IISc, Bangalore. XPS and UPS measurements were supported by Dr R J Choudhary, DAE, RRCAT, Indore and Mr Sharad Karwal, Junior Engineer, UGC-DAE CSR, Indore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesh Babu Bellam.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 236 KB)

Supplementary file2 (DOCX 419 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellam, J.B., M, B., Kuchi, C. et al. Deposition and characterization of CuI thin film as hole transporting layer for perovskite solar cells. Bull Mater Sci 45, 249 (2022). https://doi.org/10.1007/s12034-022-02831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02831-0

Keywords

Navigation