Skip to main content
Log in

Introduction, production, characterization and applications of defects in graphene

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The successful preparation of graphene in research laboratory has brought a revolutionary progress in almost all the research fields including physical, chemical and biological sciences owing to its unique structural, electrical, chemical and optical properties. Being the first ‘two-dimensional (2D) material’, it has introduced a new class of ‘2D materials’. Continuous theoretical and experimental investigations are being made to know more about graphene to take more benefits from it. The structural properties of graphene are the fundamental properties which affect all its other properties. Defects in graphene can be considered a robust tool to tune its structural and other characteristics. In this review, we have summarized the recent and significant studies on defects in graphene. We have discussed different types of defects, how these can intentionally be produced, their influence on different properties of graphene and applications of defective graphene. This review presents a comprehensive study on all about defects in graphene and provides the basic understandings and worthy knowledge to researchers and scientists of this era for future studies to achieve the diversity of graphene applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [31]. Copyright 2013, Springer Nature

Fig. 2

a Reproduced with permission from Ref. [33]. Copyright 2019, Springer Nature. b Reproduced with permission from Ref. [35]. Copyright 2012, American Chemical Society. c–e Reproduced with permission from Ref. [34]. Copyright 2011, American Chemical Society

Fig. 3

a–c Reproduced with permission from Ref. [47]. Copyright 2011, American Chemical Society. d Reproduced with permission from Ref. [48]. Copyright 2014, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [52]. Copyright 2019, Springer Nature

Fig. 5

Reproduced with permission from ref. [57]. Copyright 2017, Springer Nature

Fig. 6

Reproduced with permission from Ref. [34]. Copyright 2011, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [66]. Copyright 2017, The Royal Society of Chemistry

Fig. 8

Reproduced with permission from Ref. [73]. Copyright 2013, American Chemical Society

Fig. 9

Reproduced with permission from Ref. [92]. Copyright 2016, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [109]. Copyright 2017, Springer Nature

Fig. 11

a Reproduced with permission from Ref. [116]. Copyright 2012, American Chemical Society. b Reproduced with permission from Ref. [122]. Copyright 2019, American Chemical Society. c Reproduced with permission from Ref. [123]. Copyright 2019, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [116]. Copyright 2012, American Chemical Society

Fig. 13

a Reproduced with permission from Ref. [85]. Copyright 2011, American Chemical Society. b–d Reproduced with permission from Ref. [128]. Copyright 2010, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [135]. Copyright 2016, American Chemical Society

Fig. 15

a–d Reproduced with permission from Ref. [136]. Copyright 2010, American Chemical Society. e, f Reproduced with permission from ref. [137]. Copyright 2016, American Chemical Society

Fig. 16

Reproduced with permission from Ref. [143]. Copyright 2018, Springer Nature

Fig. 17

Reproduced with permission from Ref. [150]. Copyright 2020, WILEY–VCH

Fig. 18

Reproduced with permission from Ref. [160]. Copyright 2015, American Chemical Society

Fig. 19

Reproduced with permission from Ref. [168]. Copyright 2019, American Chemical Society

Fig. 20

Reproduced with permission from Ref. [181]. Copyright 2019, American Chemical Society

Fig. 21

Reproduced with permission from Ref. [187]. Copyright 2020, American Chemical Society

Similar content being viewed by others

References

  1. A.E. Shalan, M.K. Mohammed, N. Govindan, Graphene assisted crystallization and charge extraction for efficient and stable perovskite solar cells free of a hole-transport layer. RSC Adv. 11, 4417–4424 (2021)

    Article  CAS  Google Scholar 

  2. P. Costa, C.M. Costa, S. Lanceros-Mendez, Advanced Lightweight Multifunctional Materials (Elsevier, Amsterdam, 2020)

    Google Scholar 

  3. M.F. Sanad et al., Thermoelectric energy harvesters: a review of recent developments in materials and devices for different potential applications. Top. Curr. Chem. 378, 1–43 (2020)

    CAS  Google Scholar 

  4. M.K. Mohammed et al., Improvement of the interfacial contact between zinc oxide and a mixed cation perovskite using carbon nanotubes for ambient-air-processed perovskite solar cells. New J. Chem. 44, 19802–19811 (2020)

    Article  CAS  Google Scholar 

  5. H.M. Fahmy et al., Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials. RSC Adv. 10, 20467–20484 (2020)

    Article  CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021)

    Article  CAS  Google Scholar 

  7. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012)

    Article  CAS  Google Scholar 

  8. M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: a review. Mater. Res. Bull. 59, 323–328 (2014)

    Article  CAS  Google Scholar 

  9. Y. Wang, Z. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interfaces 3, 1127–1133 (2011)

    Article  CAS  Google Scholar 

  10. B. Haghighi, M.A. Tabrizi, Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Adv. 3, 13365–13371 (2013)

    Article  CAS  Google Scholar 

  11. B. Kartick, S. Srivastava, Green synthesis of graphene. J. Nanosci. Nanotechnol. 13, 4320–4324 (2013)

    Article  CAS  Google Scholar 

  12. G. Lee, B.S. Kim, Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Prog. 30, 463–469 (2014)

    Article  CAS  Google Scholar 

  13. S. Barua et al., One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv. 4, 9777–9783 (2014)

    Article  CAS  Google Scholar 

  14. S. Gurunathan, J.W. Han, J.H. Park, V. Eppakayala, J.-H. Kim, Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Int. J. Nanomed. 9, 363 (2014)

    Article  Google Scholar 

  15. S. Pei, Q. Wei, K. Huang, H.-M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 9, 1–9 (2018)

    Article  CAS  Google Scholar 

  16. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004)

    Article  CAS  Google Scholar 

  17. Y. Wei et al., The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012)

    Article  CAS  Google Scholar 

  18. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  19. K.S. Novoselov et al., A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  Google Scholar 

  20. P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications. Mater. Today 15, 86–97 (2012)

    Article  CAS  Google Scholar 

  21. J.-H. Lee et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014)

    Article  CAS  Google Scholar 

  22. Y. Wang et al., Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011)

    Article  CAS  Google Scholar 

  23. A. Al-Hagri et al., Direct growth of single-layer terminated vertical graphene array on germanium by plasma enhanced chemical vapor deposition. Carbon 155, 320–325 (2019)

    Article  CAS  Google Scholar 

  24. J. Zhang, R. Zhou, H. Minamimoto, K. Murakoshi, Plasmon-induced metal restructuring and graphene oxidation monitored by surface-enhanced Raman spectroscopy. Appl. Mater. Today 15, 372–376 (2019)

    Article  Google Scholar 

  25. K.K. Manga, S. Wang, M. Jaiswal, Q. Bao, K.P. Loh, High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv. Mater. 22, 5265–5270 (2010)

    Article  CAS  Google Scholar 

  26. P. Schweizer, C. Dolle, E. Spiecker, In situ manipulation and switching of dislocations in bilayer graphene. Sci. Adv. 4, 4712 (2018)

    Article  CAS  Google Scholar 

  27. A. Soam et al., Development of paper-based flexible supercapacitor: bismuth ferrite/graphene nanocomposite as an active electrode material. J. Alloys Compds. 813, 152145 (2020)

    Article  CAS  Google Scholar 

  28. J.C. Meyer et al., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008)

    Article  CAS  Google Scholar 

  29. H. Qin, V. Sorkin, Q.-X. Pei, Y. Liu, Y.-W. Zhang, Failure in two-dimensional materials: defect sensitivity and failure criteria. J. Appl. Mech. (2020). https://doi.org/10.1115/1.4045005

    Article  Google Scholar 

  30. J. Li, Q. Zhou, W. Ju, Q. Zhang, Y. Liu, Effect of Stone-Wales defects and transition-metal dopants on arsenene: a DFT study. RSC Adv. 9, 19048–19056 (2019)

    Article  CAS  Google Scholar 

  31. T. Björkman et al., Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Sci. Rep. 3, 3482 (2013)

    Article  Google Scholar 

  32. K. Fan et al., Dependence of the fluorination intercalation of graphene toward high-quality fluorinated graphene formation. Chem. Sci. 10, 5546–5555 (2019)

    Article  CAS  Google Scholar 

  33. C.R.S.V. Boas et al., Characterization of nitrogen doped grapheme bilayers synthesized by fast, low temperature microwave plasma-enhanced chemical vapour deposition. Sci. Rep. 9, 1–12 (2019)

    Google Scholar 

  34. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)

    Article  CAS  Google Scholar 

  35. M.F. Chisholm, G. Duscher, W. Windl, Oxidation resistance of reactive atoms in graphene. Nano Lett. 12, 4651–4655 (2012)

    Article  CAS  Google Scholar 

  36. F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv. Energy Mater. 10, 1902107 (2020)

    Article  CAS  Google Scholar 

  37. X. Zhang et al., Sizable bandgaps of graphene in 3d transition metal intercalated defective graphene/WSe 2 heterostructures. RSC Adv. 9, 18157–18164 (2019)

    Article  CAS  Google Scholar 

  38. Q. Zhang et al., Probing interface manipulation of metal-graphene composites via doping and vacancy engineering towards excellent mechanical strengths. ChemistrySelect 5, 61–68 (2020)

    Article  CAS  Google Scholar 

  39. P. Gajurel et al., Vacancy-controlled contact friction in graphene. Adv. Funct. Mater. 27, 1702832 (2017)

    Article  CAS  Google Scholar 

  40. E. Zaminpayma, M.E. Razavi, P. Nayebi, Electronic properties of graphene with single vacancy and Stone-Wales defects. Appl. Surf. Sci. 414, 101–106 (2017)

    Article  CAS  Google Scholar 

  41. Q. Pan et al., BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting. Chem. Eng. J. 372, 399–407 (2019)

    Article  CAS  Google Scholar 

  42. G. Dai, L. Chen, X. Zhao, Catalytic oxidation mechanisms of carbon monoxide over single and double vacancy Cr-embedded graphene. J. Mater. Sci. 54, 1395–1408 (2019)

    Article  CAS  Google Scholar 

  43. M. Li, H. Zhou, Y. Zhang, Y. Liao, H. Zhou, The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv. 7, 46101–46108 (2017)

    Article  CAS  Google Scholar 

  44. J. Zhang et al., Controlled growth of single-crystal graphene films. Adv. Mater. 32, 1903266 (2020)

    Article  CAS  Google Scholar 

  45. H.I. Rasool, C. Ophus, W.S. Klug, A. Zettl, J.K. Gimzewski, Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 4, 1–7 (2013)

    Article  CAS  Google Scholar 

  46. B.I. Yakobson, F. Ding, Observational geology of graphene, at the nanoscale. ACS Nano 5, 1569–1574 (2011)

    Article  CAS  Google Scholar 

  47. A. Bagri, S.-P. Kim, R.S. Ruoff, V.B. Shenoy, Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11, 3917–3921 (2011)

    Article  CAS  Google Scholar 

  48. H.I. Rasool et al., Conserved atomic bonding sequences and strain organization of graphene grain boundaries. Nano Lett. 14, 7057–7063 (2014)

    Article  CAS  Google Scholar 

  49. K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Mobility variations in mono-and multi-layer graphene films. Appl. Phys. Express 2, 025003 (2009)

    Article  CAS  Google Scholar 

  50. K. Balasubramanian et al., Reversible defect engineering in graphene grain boundaries. Nat. Commun. 10, 1–9 (2019)

    Article  CAS  Google Scholar 

  51. X. Fan et al., Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure. Sci. Adv. 4, 5170 (2018)

    Article  CAS  Google Scholar 

  52. T. Zhao et al., Ultrafast growth of nanocrystalline graphene films by quenching and grain-size-dependent strength and bandgap opening. Nat. Commun. 10, 1–10 (2019)

    Article  CAS  Google Scholar 

  53. Z. Qin, B. Safaei, X. Pang, F. Chu, Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions. Results Phys. 15, 102752 (2019)

    Article  Google Scholar 

  54. X. Liu, I. Balla, H. Bergeron, M.C. Hersam, Point defects and grain boundaries in rotationally commensurate MoS2 on epitaxial graphene. J. Phys. Chem. C 120, 20798–20805 (2016)

    Article  CAS  Google Scholar 

  55. S. Mukherjee, R. Alicandri, C.V. Singh, Strength of graphene with curvilinear grain boundaries. Carbon 158, 808–817 (2020)

    Article  CAS  Google Scholar 

  56. Y. Hou et al., Surface crystallographic structure insensitive growth of oriented graphene domains on Cu substrates. Mater. Today 36, 10 (2020)

    Article  CAS  Google Scholar 

  57. P. Hirvonen et al., Energetics and structure of grain boundary triple junctions in graphene. Sci. Rep. 7, 1–14 (2017)

    Article  CAS  Google Scholar 

  58. J. Sun, Y. Guo, Q. Wang, Y. Kawazoe, Thermal transport properties of penta-graphene with grain boundaries. Carbon 145, 445–451 (2019)

    Article  CAS  Google Scholar 

  59. B.P. Klein et al., Enhanced bonding of pentagon–heptagon defects in graphene to metal surfaces: insights from the adsorption of azulene and naphthalene to Pt (111). Chem. Mater. 32, 1041–1053 (2020)

    Article  CAS  Google Scholar 

  60. J. Wu et al., Effect of grain boundaries on charge transport in CVD-grown bilayer graphene. Carbon 147, 434–440 (2019)

    Article  CAS  Google Scholar 

  61. Y. Cheng et al., Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 6, 1802066 (2019)

    Article  CAS  Google Scholar 

  62. O.V. Yazyev, S.G. Louie, Topological defects in graphene: dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010)

    Article  CAS  Google Scholar 

  63. M. Makaremi, B. Mortazavi, C.V. Singh, Adsorption of metallic, metalloidic, and nonmetallic adatoms on two-dimensional C3N. J. Phys. Chem. C 121, 18575–18583 (2017)

    Article  CAS  Google Scholar 

  64. J. Son et al., Tailoring surface properties via functionalized hydrofluorinated graphene compounds. Adv. Mater. 31, 1903424 (2019)

    Article  CAS  Google Scholar 

  65. Y. Chen et al., Nanomanufacturing of graphene nanosheets through nano-hole opening and closing. Mater. Today 24, 26–32 (2019)

    Article  CAS  Google Scholar 

  66. Y. Tang et al., The electronic and diffusion properties of metal adatoms on graphene sheets: a first-principles study. RSC Adv. 7, 33208–33218 (2017)

    Article  CAS  Google Scholar 

  67. J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019)

    Article  CAS  Google Scholar 

  68. S. Entani, M. Takizawa, S. Li, H. Naramoto, S. Sakai, Growth of graphene on SiO2 with hexagonal boron nitride buffer layer. Appl. Surf. Sci. 475, 6–11 (2019)

    Article  CAS  Google Scholar 

  69. Y. Liu et al., Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 7, 1–9 (2016)

    CAS  Google Scholar 

  70. K. Yin et al., Unsupported single-atom-thick copper oxide monolayers. Materials 4, 011001 (2016)

    Google Scholar 

  71. M. Ziatdinov et al., Building and exploring libraries of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study. Sci. Adv. 5, 8989 (2019)

    Article  CAS  Google Scholar 

  72. J.A. Elias, E.A. Henriksen, Unexpected hole doping of graphene by osmium adatoms. Ann. Phys. 532, 1900294 (2020)

    Article  CAS  Google Scholar 

  73. Y.-F. Lu et al., Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7, 6522–6532 (2013)

    Article  CAS  Google Scholar 

  74. T. Huang et al., Selective deposition of plasmonic copper on few layers graphene with specific defects for efficiently synchronous photocatalytic hydrogen production. Carbon 143, 257–267 (2019)

    Article  CAS  Google Scholar 

  75. M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015)

    Article  CAS  Google Scholar 

  76. M. Kim et al., Atomic layer deposition of nickel using a heteroleptic Ni precursor with NH3 and selective deposition on defects of graphene. ACS Omega 4, 11126–11134 (2019)

    Article  CAS  Google Scholar 

  77. L. Han et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9, 1283–1288 (2019)

    Article  CAS  Google Scholar 

  78. L. Chen et al., Heavily doped and highly conductive hierarchical nanoporous graphene for electrochemical hydrogen production. Angew. Chem. 130, 13486–13491 (2018)

    Article  Google Scholar 

  79. H. Chen, W. Du, J. Liu, L. Qu, C. Li, Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chem. Sci. 10, 1244–1253 (2019)

    Article  CAS  Google Scholar 

  80. L. Daukiya et al., Covalent functionalization by cycloaddition reactions of pristine defect-free graphene. ACS Nano 11, 627–634 (2017)

    Article  CAS  Google Scholar 

  81. S.B. Kumar, J. Guo, Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 12, 1362–1366 (2012)

    Article  CAS  Google Scholar 

  82. C. Hadad et al., Graphene quantum dots: from efficient preparation to safe renal excretion. Nano Res. 14, 674–683 (2021)

    Article  CAS  Google Scholar 

  83. Z.-Y. Han et al., A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 56, 1–30 (2021)

    Article  CAS  Google Scholar 

  84. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Simple salt-assisted combustion synthesis of Nd2 Sn2 O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci. Mater. Electron. 27, 11698–11706 (2016)

    Article  CAS  Google Scholar 

  85. L.G. Cançado et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)

    Article  CAS  Google Scholar 

  86. G. Yuan et al., Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020)

    Article  CAS  Google Scholar 

  87. P.A. Denis, F. Iribarne, Comparative study of defect reactivity in graphene. J. Phys. Chem. C 117, 19048–19055 (2013)

    Article  CAS  Google Scholar 

  88. M. Clausi et al., Direct effects of UV irradiation on graphene-based nanocomposite films revealed by electrical resistance tomography. Compos. Sci. Technol. 183, 107823 (2019)

    Article  CAS  Google Scholar 

  89. S. Mortazavi et al., Ti: Sapphire laser irradiation of graphene oxide film in order to tune its structural, chemical and electrical properties: patterning and characterizations. Appl. Surf. Sci. 500, 144053 (2020)

    Article  CAS  Google Scholar 

  90. M. Kalbac, O. Lehtinen, A.V. Krasheninnikov, J. Keinonen, Ion-irradiation-induced defects in isotopically-labeled two layered graphene: enhanced in-situ annealing of the damage. Adv. Mater. 25, 1004–1009 (2013)

    Article  CAS  Google Scholar 

  91. X.-J. Zhao et al., Molecular defect-containing bilayer graphene exhibiting brightened luminescence. Sci. Adv. 6, 8541 (2020)

    Article  CAS  Google Scholar 

  92. K. Yoon et al., Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano 10, 8376–8384 (2016)

    Article  CAS  Google Scholar 

  93. T. Shi, Q. Peng, Z. Bai, F. Gao, I. Jovanovic, Proton irradiation of graphene: insights from atomistic modeling. Nanoscale 11, 20754–20765 (2019)

    Article  CAS  Google Scholar 

  94. Y.-C. Chang et al., Characteristics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition. Carbon 159, 570–578 (2020)

    Article  CAS  Google Scholar 

  95. M. Cutroneo et al., Effects of the ion bombardment on the structure and composition of GO and rGO foils. Mater. Chem. Phys. 232, 272–277 (2019)

    Article  CAS  Google Scholar 

  96. Y. Zhang, Y. Xu, Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Adv. Funct. Mater. 29, 1902171 (2019)

    Article  CAS  Google Scholar 

  97. P. Wei, J. Shen, K. Wu, N. Yang, Defect-dependent electrochemistry of exfoliated graphene layers. Carbon 154, 125–131 (2019)

    Article  CAS  Google Scholar 

  98. A.A. Abuelwafa et al., Laser-assisted doping of graphene for transparent conducting electrodes. Mater. Chem. Phys. 263, 124348 (2021)

    Article  CAS  Google Scholar 

  99. M. Wei et al., Flexible transparent electrodes for organic light-emitting diodes simply fabricated with AuCl3-modied graphene. Org. Electron. 63, 71–77 (2018)

    Article  CAS  Google Scholar 

  100. C. Mellado, T. Figueroa, R. Baez, M. Melendrez, K. Fernandez, Effects of probe and bath ultrasonic treatments on graphene oxide structure. Mater. Today Chem. 13, 1–7 (2019)

    Article  CAS  Google Scholar 

  101. H. Grajek, J. Jonik, Z. Witkiewicz, T. Wawer, M. Purchała, Applications of graphene and its derivatives in chemical analysis. Crit. Rev. Anal. Chem. 50, 445–471 (2020)

    Article  CAS  Google Scholar 

  102. M.G. Stanford et al., Flash graphene morphologies. ACS Nano 14, 13691 (2020)

    Article  CAS  Google Scholar 

  103. S. Gilje et al., Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 22, 419–423 (2010)

    Article  CAS  Google Scholar 

  104. D.X. Luong et al., Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020)

    Article  CAS  Google Scholar 

  105. A. Aliprandi et al., Persian waxing of graphite: towards green large-scale production of graphene. Chem. Commun. 55, 5331–5334 (2019)

    Article  CAS  Google Scholar 

  106. Y. Zhang et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020)

    Article  CAS  Google Scholar 

  107. B. Lee, D.W. Suh, S.P. Hong, J. Yoon, A surface-modified EDTA-reduced graphene oxide membrane for nanofiltration and anti-biofouling prepared by plasma post-treatment. Environ. Sci. Nano 6, 2292–2298 (2019)

    Article  CAS  Google Scholar 

  108. H. Li et al., Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene. Nanoscale 11, 11145–11151 (2019)

    Article  CAS  Google Scholar 

  109. E. Tatarova et al., Towards large-scale in free-standing graphene and N-graphene sheets. Sci. Rep. 7, 1–16 (2017)

    Article  CAS  Google Scholar 

  110. T. Pakornchote et al., Raman spectroscopy on hydrogenated graphene under high pressure. Carbon 156, 549–557 (2020)

    Article  CAS  Google Scholar 

  111. H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)

    Article  CAS  Google Scholar 

  112. M.M. Ugeda et al., Electronic and structural characterization of divacancies in irradiated graphene. Phys. Rev. B 85, 121402 (2012)

    Article  CAS  Google Scholar 

  113. Pollard, A. J. et al. Quantitative characterization of defect size in graphene using Raman spectroscopy. Applied Physics Letters 105, 253107 (2014).

  114. M.M. Lucchese et al., Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)

    Article  CAS  Google Scholar 

  115. P. Feicht, S. Eigler, Defects in graphene oxide as structural motifs. ChemNanoMat 4, 244–252 (2018)

    Article  CAS  Google Scholar 

  116. A. Eckmann et al., Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012)

    Article  CAS  Google Scholar 

  117. R. Beams, L.G. Cançado, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 27, 083002 (2015)

    Article  CAS  Google Scholar 

  118. A. Zandiatashbar et al., Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 1–9 (2014)

    Article  CAS  Google Scholar 

  119. K.-M. Hu et al., Probing built-in stress effect on the defect density of stretched monolayer graphene membranes. Carbon 152, 233–240 (2019)

    Article  CAS  Google Scholar 

  120. F. Schedin et al., Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010)

    Article  CAS  Google Scholar 

  121. F. Kampmann et al., Raman spectroscopy of lithographically defined graphene nanoribbons-influence of size and defects. Ann. Phys. 529, 1700167 (2017)

    Article  CAS  Google Scholar 

  122. S. Botti et al., Extreme ultraviolet generation of localized defects in single-layer graphene: Raman mapping, atomic force microscopy, and high-resolution scanning electron microscopy analysis. ACS Appl. Electron. Mater. 1, 2560–2565 (2019)

    Article  CAS  Google Scholar 

  123. H. AlSalem et al., Evidence for site-specific reversible hydrogen adsorption on graphene by sum-frequency generation spectroscopy and density functional theory. J. Phys. Chem. C 123, 25883–25889 (2019)

    Article  CAS  Google Scholar 

  124. J. Jiang et al., A Raman spectroscopy signature for characterizing defective single-layer graphene: defect-induced I (D)/I (D′) intensity ratio by theoretical analysis. Carbon 90, 53–62 (2015)

    Article  CAS  Google Scholar 

  125. W. Wu et al., The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets. Nanophotonics 9, 2033 (2020)

    Article  CAS  Google Scholar 

  126. I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 1, 1–20 (2013)

    Google Scholar 

  127. A.L. Ivanovskii, Graphene-based and graphene-like materials. Russ. Chem. Rev. 81, 571 (2012)

    Article  CAS  Google Scholar 

  128. Z. Ni et al., On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 10, 3868–3872 (2010)

    Article  CAS  Google Scholar 

  129. J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 28, 1801983 (2018)

    Article  CAS  Google Scholar 

  130. W. Xie, L.-T. Weng, K.M. Ng, C.K. Chan, C.-M. Chan, Defects of clean graphene and sputtered graphite surfaces characterized by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Carbon 112, 192–200 (2017)

    Article  CAS  Google Scholar 

  131. V.I. Sysoev, A.V. Okotrub, V.E. Arkhipov, D.A. Smirnov, L.G. Bulusheva, X-ray photoelectron study of electrical double layer at graphene/phosphoric acid interface. Appl. Surf. Sci. 515, 146007 (2020)

    Article  CAS  Google Scholar 

  132. X. Li et al., Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon 148, 540–549 (2019)

    Article  CAS  Google Scholar 

  133. F. Sharif et al., Synthesis of a high-temperature stable electrochemically exfoliated graphene. Carbon 157, 681–692 (2020)

    Article  CAS  Google Scholar 

  134. P. Gomasang et al., A novel graphene barrier against moisture by multiple stacking large-grain graphene. Sci. Rep. 9, 1–10 (2019)

    Article  CAS  Google Scholar 

  135. Y. Cheng et al., Direct identification of multilayer graphene stacks on copper by optical microscopy. Chem. Mater. 28, 2165–2171 (2016)

    Article  CAS  Google Scholar 

  136. C. Gómez-Navarro et al., Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010)

    Article  CAS  Google Scholar 

  137. S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10, 7515–7522 (2016)

    Article  CAS  Google Scholar 

  138. J. Meyer, Graphene (Elsevier, Amsterdam, 2014), pp. 101–123

    Book  Google Scholar 

  139. R. Zan et al., Scanning tunnelling microscopy of suspended graphene. Nanoscale 4, 3065–3068 (2012)

    Article  CAS  Google Scholar 

  140. D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541 (2019)

    Article  CAS  Google Scholar 

  141. S.-Y. Li et al., Nanoscale detection of valley-dependent spin splitting around atomic defects of graphene. 2D Mater. 6, 031005 (2019)

    Article  CAS  Google Scholar 

  142. E. Olsson, G. Chai, M. Dove, Q. Cai, Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale 11, 5274–5284 (2019)

    Article  CAS  Google Scholar 

  143. R. Ishikawa et al., Direct electric field imaging of graphene defects. Nat. Commun. 9, 1–6 (2018)

    Article  CAS  Google Scholar 

  144. K. Cao et al., Elastic straining of free-standing monolayer graphene. Nat. Commun. 11, 1–7 (2020)

    Google Scholar 

  145. H. Nakajima et al., Imaging of local structures affecting electrical transport properties of large graphene sheets by lock-in thermography. Sci. Adv. 5, 3407 (2019)

    Article  CAS  Google Scholar 

  146. H.Y. Mao et al., Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog. Surf. Sci. 88, 132–159 (2013)

    Article  CAS  Google Scholar 

  147. L. Liu, M. Qing, Y. Wang, S. Chen, Defects in graphene: generation, healing, and their effects on the properties of graphene: a review. J. Mater. Sci. Technol. 31, 599–606 (2015)

    Article  CAS  Google Scholar 

  148. G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19, 613–648 (2018)

    Article  CAS  Google Scholar 

  149. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326 (2010)

    Article  CAS  Google Scholar 

  150. Z. Wang, Q. Yao, S. Eigler, Room-temperature transport properties of graphene with defects derived from oxo-graphene. Chem. Eur. J. 26, 6484 (2019)

    Article  CAS  Google Scholar 

  151. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012)

    Article  CAS  Google Scholar 

  152. N.T. Qazvini, S. Zinatloo, Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J. Mater. Sci. Mater. Med. 22, 63–69 (2011)

    Article  CAS  Google Scholar 

  153. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  154. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  Google Scholar 

  155. J. Wu et al., Graphene oxide for integrated photonics and flat optics. Adv. Mater. 33, 2006415 (2021)

    Article  CAS  Google Scholar 

  156. J. Wang, J. Song, X. Mu, M. Sun, Optoelectronic and photoelectric properties and applications of graphene-based nanostructures. Mater. Today Phys. 13, 100196 (2020)

    Article  Google Scholar 

  157. H. Huang et al., The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 30, 1909035 (2020)

    Article  CAS  Google Scholar 

  158. K.M. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012)

    Article  CAS  Google Scholar 

  159. S.H. Baek et al., Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater. Sci. Eng. C 107, 110273 (2020)

    Article  CAS  Google Scholar 

  160. A.E. Jakus et al., Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636–4648 (2015)

    Article  CAS  Google Scholar 

  161. W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019)

    Article  CAS  Google Scholar 

  162. B. Genorio et al., Tuning the selectivity and activity of electrochemical interfaces with defective graphene oxide and reduced graphene oxide. ACS Appl. Mater. Interfaces 11, 34517–34525 (2019)

    Article  CAS  Google Scholar 

  163. M. Horn, B. Gupta, J. MacLeod, J. Liu, N. Motta, Graphene-based supercapacitor electrodes: addressing challenges in mechanisms and materials. Curr. Opin. Green Sustain. Chem. 17, 42–48 (2019)

    Article  Google Scholar 

  164. J. Ye et al., Defect formation-induced tunable evolution of oxygen functional groups for sodium storage in porous graphene. Chem. Commun. 56, 1089–1092 (2020)

    Article  CAS  Google Scholar 

  165. A. Soam, P. Kavle, A. Kumbhar, R.O. Dusane, Performance enhancement of micro-supercapacitor by coating of graphene on silicon nanowires at room temperature. Curr. Appl. Phys. 17, 314–320 (2017)

    Article  Google Scholar 

  166. Z. Zhang, C.S. Lee, W. Zhang, Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 7, 1700678 (2017)

    Article  CAS  Google Scholar 

  167. Y. Dong et al., Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 29, 1901127 (2019)

    Article  CAS  Google Scholar 

  168. D. Wang, J. Nai, L. Xu, T. Sun, A potassium formate activation strategy for the synthesis of ultrathin graphene-like porous carbon nanosheets for advanced supercapacitor applications. ACS Sustain. Chem. Eng. 7, 18901–18911 (2019)

    Article  CAS  Google Scholar 

  169. W. Kong et al., Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019)

    Article  CAS  Google Scholar 

  170. S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov, N. Karim, Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 30, 2000293 (2020)

    Article  CAS  Google Scholar 

  171. N. Liu et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017)

    Article  CAS  Google Scholar 

  172. H. Ba et al., Cotton fabric coated with few-layer graphene as highly responsive surface heaters and integrated lightweight E-textiles circuits. ACS Appl. Nano Mater. 3, 9771 (2020)

    Article  CAS  Google Scholar 

  173. F. Ning et al., Surface thermodynamic stability of Li-rich Li2MnO3: effect of defective graphene. Energy Storage Mater. 22, 113–119 (2019)

    Article  Google Scholar 

  174. X. Xu et al., Three dimensionally free-formable graphene foam with designed structures for energy and environmental applications. ACS Nano 14, 937–947 (2019)

    Article  CAS  Google Scholar 

  175. Y.J. Yun et al., Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27, 1701513 (2017)

    Article  CAS  Google Scholar 

  176. A. Zada et al., Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Adv. Funct. Mater. 30, 1906744 (2020)

    Article  CAS  Google Scholar 

  177. R.U.R. Sagar et al., Transfer-free growth of Bi2O2Se on silicon dioxide via chemical vapor deposition. ACS Appl. Electron. Mater. 2, 2123–2131 (2020)

    Article  CAS  Google Scholar 

  178. R.D. Rodriguez et al., Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Mater. Horiz. 7, 1030–1041 (2020)

    Article  CAS  Google Scholar 

  179. C. Dai et al., Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2, 509–526 (2020)

    Article  CAS  Google Scholar 

  180. W. Ahmad, S. Ahmed, M. Amjad, S. Akhtar, M. Ali, Electrical and photo-stimulated characteristics of all-implanted CMOS compatible planar Si photodiode. Optik 155, 297–300 (2018)

    Article  CAS  Google Scholar 

  181. N. Mitoma, Y. Yano, H. Ito, Y. Miyauchi, K. Itami, Graphene nanoribbon dielectric passivation layers for graphene electronics. ACS Appl. Nano Mater. 2, 4825–4831 (2019)

    Article  CAS  Google Scholar 

  182. X. Gan et al., High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 13, 691–696 (2013)

    Article  CAS  Google Scholar 

  183. Y. Yang et al., Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 6, 1033–1040 (2019)

    Article  CAS  Google Scholar 

  184. W. Ahmad, M.U. Ali, V. Laxmi, A.S. Syed, Simulation and characterization of pin photodiode for photonic applications. Asian J. Nanosci. Mater. 1, 122–134 (2018)

    Google Scholar 

  185. O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 1–10 (2015)

    Google Scholar 

  186. J. Wang, X. Mu, M. Sun, T. Mu, Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Appl. Mater. Today 16, 1–20 (2019)

    Article  Google Scholar 

  187. L. Viti, D.G. Purdie, A. Lombardo, A.C. Ferrari, M.S. Vitiello, HBN-encapsulated, graphene-based, room-temperature terahertz receivers, with high speed and low noise. Nano Lett. 20, 3169–3177 (2020)

    Article  CAS  Google Scholar 

  188. S. Kang et al., 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Mater. 7, 022003 (2020)

    Article  CAS  Google Scholar 

  189. W. Ahmad et al., Evolution of low-dimensional material-based field-effect transistors. Nanoscale 13, 5162–5186 (2021)

    Article  CAS  Google Scholar 

  190. X. Duan, S. Indrawirawan, H. Sun, S. Wang, Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catal. Today 249, 184–191 (2015)

    Article  CAS  Google Scholar 

  191. A.K. Farquhar, H.M. Dykstra, M.R. Waterland, A.J. Downard, P.A. Brooksby, Spontaneous modification of free-floating few-layer graphene by aryldiazonium ions: electrochemistry, atomic force microscopy, and infrared spectroscopy from grafted films. J. Phys. Chem. C 120, 7543–7552 (2016)

    Article  CAS  Google Scholar 

  192. N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008)

    Article  CAS  Google Scholar 

  193. P. Song et al., Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon 111, 807–812 (2017)

    Article  CAS  Google Scholar 

  194. E.-Y. Choi et al., Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 20, 1907–1912 (2010)

    Article  CAS  Google Scholar 

  195. A.S. Mayorov et al., Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011)

    Article  CAS  Google Scholar 

  196. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  CAS  Google Scholar 

  197. J. Hwang et al., Green synthesis of reduced-graphene oxide quantum dots and application for colorimetric biosensor. Sens. Actuators A Phys. 318, 112495 (2021)

    Article  CAS  Google Scholar 

  198. K. Kakaei, G. Ghadimi, A green method for nitrogen-doped graphene and its application for oxygen reduction reaction in alkaline media. Mater. Technol. 36, 46–53 (2021)

    Article  CAS  Google Scholar 

  199. F.A. dos Santos, N.C. Vieira, N.A. Zambianco, B.C. Janegitz, V. Zucolotto, The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors. Appl. Surf. Sci. 543, 148698 (2021)

    Article  CAS  Google Scholar 

  200. X. Yu et al., Graphene-based smart materials. Nat. Rev. Mater. 2, 1–13 (2017)

    Article  CAS  Google Scholar 

  201. A. Islam, B. Mukherjee, K.K. Pandey, A.K. Keshri, Ultra-fast, chemical-free, mass production of high quality exfoliated graphene. ACS Nano 15, 1775–1784 (2021)

    Article  CAS  Google Scholar 

  202. M. Huang et al., Substrate engineering for CVD growth of single crystal graphene. Small Methods 5, 2001213 (2021)

    Article  Google Scholar 

  203. Z. Gao et al., Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene. Nat. Commun. 11, 1–10 (2020)

    Google Scholar 

  204. M. Juvaid, D. Kumar, M.R. Rao, Realization of good quality bilayer graphene by single step laser ablation process. Mater. Res. Bull. 126, 110840 (2020)

    Article  CAS  Google Scholar 

  205. M. Coros et al., Green synthesis, characterization and potential application of reduced graphene oxide. Phys. E. 119, 113971 (2020)

    Article  CAS  Google Scholar 

  206. H.-L. Hou et al., Electrochemically controlled cleavage of imine bonds on a graphene platform: towards new electro-responsive hybrids for drug release. Nanoscale 12, 23824–23830 (2020)

    Article  CAS  Google Scholar 

  207. I. Carayon, A. Gaubert, Y. Mousli, B. Philippe, Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomater. Sci. 8, 5589–5600 (2020)

    Article  CAS  Google Scholar 

  208. W. Du et al., Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Compos. A Appl. Sci. Manuf. 128, 105686 (2020)

    Article  CAS  Google Scholar 

  209. T. Zhu et al., A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 385, 123912 (2020)

    Article  CAS  Google Scholar 

  210. R. Lima-Sousa et al., Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater. Sci. Eng. C 117, 111294 (2020)

    Article  CAS  Google Scholar 

  211. R.K. Gupta, S. Hashmi, S. Verma, A. Naik, P. Nair, Recovery stress and storage modulus of microwave-induced graphene-reinforced thermoresponsive shape memory polyurethane nanocomposites. J. Mater. Eng. Perform. 29, 205–214 (2020)

    Article  CAS  Google Scholar 

  212. S. Kapoor et al., Strategically designed reduced graphene oxide based magnetic responsive nanocatalysts for the attenuation of recalcitrant pollutants. Ceram. Int. 46, 2724–2742 (2020)

    Article  CAS  Google Scholar 

  213. B. Han et al., Multi-field-coupling energy conversion for flexible manipulation of graphene-based soft robots. Nano Energy 71, 104578 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaka Ullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Consent to participate

All authors have provided consent to participate.

Consent for publication

All authors have provided consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Ullah, Z., Sonil, N.I. et al. Introduction, production, characterization and applications of defects in graphene. J Mater Sci: Mater Electron 32, 19991–20030 (2021). https://doi.org/10.1007/s10854-021-06575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06575-1

Navigation