Skip to main content
Log in

Precipitation method to prepare conductive F-doped SnO2-coated rutile TiO2 whisker and its application in coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, K2Ti4O9 whiskers are prepared by adding a certain amount of NaCl as the whisker reaction slow-release agent. Rutile TiO2 whiskers are obtained by ion exchange and microwave sintering method with K2Ti4O9 whiskers as templates. The surface morphology and crystal structure of K2Ti4O9 whiskers are analyzed and characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). One-dimensional conductive whiskers of fluorine-doped tin dioxide-coated rutile titanium dioxide (FTO@TiO2) were prepared by the hydrothermal chemical combined precipitation method. Under the optimized conditions, the resistivity of the conductive whiskers was 0.625 kΩ, and the Hunter whiteness is 80.3. Additionally, FTO@TiO2 conductive nanomaterials were dispersed into acrylic polymer emulsion (APE) to make antistatic slurry and coat it on the surface of the polyester fabric. After the antistatic coating has dried, FTO@TiO2 whiskers are located in the coating mold; FTO@TiO2 whiskers bridge each other to form a current path, so that the fabric has antistatic properties. Under the best experimental parameters, the FTO@TiO2 whiskers possessed excellent electrical conductivity, and the surface resistance of the coated fabric can reach 106 Ω, and it presented certain antistatic properties as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Kasisomayajula, N. Jadhav, V.J. Gelling, Investigation on mechanical and conductive properties of polypyrrole/UV cured acrylate nanocomposite coatings. Prog. Org. Coat. 154, 106190 (2021). https://doi.org/10.1016/j.porgcoat.2021.106190

    Article  CAS  Google Scholar 

  2. C. Lan, L. Zou, N. Wang, Y. Qiu, Y. Ma, Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. J. Colloid Interface Sci. 590, 467–475 (2021). https://doi.org/10.1016/j.jcis.2021.01.074

    Article  CAS  Google Scholar 

  3. F. Wang, L. Feng, G. Li, Properties of waterborne polyurethane conductive coating with low MWCNTs content by electrostatic spraying. Polymers 10, 1406 (2018). https://doi.org/10.3390/polym10121406

    Article  CAS  Google Scholar 

  4. S.K. Ponnaiah, P. Prakash, J. Balasubramanian, Effective and reliable platform for nonenzymatic nanomolar-range quinol detection in water samples using ceria doped polypyrrole nanocomposite embedded on graphitic carbon nitride nanosheets. Chemosphere 271, 129533 (2021). https://doi.org/10.1016/j.chemosphere.2021.129533

    Article  CAS  Google Scholar 

  5. G. Wen, Y. Sui, X. Zhang, J. Li, Z. Zhang, S. Zhong, S. Tang, L. Wu, Mn3O4 anchored polypyrrole nanotubes as an efficient sulfur host for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 589, 208–216 (2021). https://doi.org/10.1016/j.jcis.2021.01.006

    Article  CAS  Google Scholar 

  6. Y. Zhang, T. Wang, J. Meng, J. Lei, X. Zheng, Y. Wang, J. Zhang, X. Cao, X. Li, X. Qiu, J. Xue, A novel conductive composite membrane with polypyrrole (PPy) and stainless-steel mesh: fabrication, performance, and anti-fouling mechanism. J. Membr. Sci. 621, 118937 (2021). https://doi.org/10.1016/j.memsci.2020.118937

    Article  CAS  Google Scholar 

  7. L. Jiang, J.A. Syed, Y. Gao, Q. Zhang, J. Zhao, H. Lu, X. Meng, Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates. Appl. Surf. Sci. 426, 87–98 (2017). https://doi.org/10.1016/j.apsusc.2017.07.077

    Article  CAS  Google Scholar 

  8. J. Dai, Y. Lv, J. Zhang, D. Zhang, H. Xie, C. Guo, A. Zhu, Y. Xu, M. Fan, C. Yuan, L. Dai, Effect of morphology and phase engineering of MoS2 on electrochemical properties of carbon nanotube/polyaniline@MoS2 composites. J. Colloid Interface Sci. 590, 591–600 (2021). https://doi.org/10.1016/j.jcis.2021.01.051

    Article  CAS  Google Scholar 

  9. H. Chen, Y. Xiang, R. Cai, L. Zhang, Y. Zhang, N. Zhou, An ultrasensitive biosensor for dual-specific DNA based on deposition of polyaniline on a self-assembled multi-functional DNA hexahedral-nanostructure. Biosens. Bioelectron. 179, 113066 (2021). https://doi.org/10.1016/j.bios.2021.113066

    Article  CAS  Google Scholar 

  10. Z. Xu, Q. Wang, Z. Hui, S. Zhao, Y. Zhao, L. Wang, Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: a stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chem. 349, 129202 (2021). https://doi.org/10.1016/j.foodchem.2021.129202

    Article  CAS  Google Scholar 

  11. D.S. Saidina, N. Eawwiboonthanakit, M. Mariatti, S. Fontana, C. Herold, Recent development of graphene-based ink and other conductive material-based inks for flexible electronics. J. Electron. Mater. 48, 3428–3450 (2019). https://doi.org/10.1007/s11664-019-07183-w

    Article  CAS  Google Scholar 

  12. Y.-H. Chiao, M. Sivakumar, S. Yadav, S. Yoshikawa, W.-S. Hung, Eco-friendly water-based graphene/sodium silicate dispersion for electrically conductive screen-printing technique and theoretical studies. Carbon 178, 26–36 (2021). https://doi.org/10.1016/j.carbon.2021.02.089

    Article  CAS  Google Scholar 

  13. Z. Xu, Y. Zhu, Z. Pang, M. Ge, Sol–gel preparation and properties of electroconductive Sn-Al co-doped ZnO coated TiO2 whisker and its applications in textiles. Mater. Sci. Semicond. Process. 124, 105607 (2021). https://doi.org/10.1016/j.mssp.2020.105607

    Article  CAS  Google Scholar 

  14. Z. Zhang, W. Cai, Y. Lv, Y. Jin, K. Chen, L. Wang, X. Zhou, Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 30, 14036–14044 (2019). https://doi.org/10.1007/s10854-019-01768-1

    Article  CAS  Google Scholar 

  15. W. Liu, H. Chen, M. Ge, Q.-Q. Ni, Q. Gao, Electroactive shape memory composites with TiO2 whiskers for switching an electrical circuit. Mater. Des. 143, 196–203 (2018). https://doi.org/10.1016/j.matdes.2018.02.005

    Article  CAS  Google Scholar 

  16. C. Wang, H. Wang, Y. Hu, Z. Liu, C. Lv, Y. Zhu, N. Bao, Anti-corrosive and scale inhibiting polymer-based functional coating with internal and external regulation of TiO2 whiskers. Coatings 8, 29 (2018). https://doi.org/10.3390/coatings8010029

    Article  CAS  Google Scholar 

  17. L. Yu, L. Zhang, J. Fu, J. Yun, K.H. Kim, Hierarchical tiny-Sb encapsulated in MOFs derived-carbon and TiO2 hollow nanotubes for enhanced Li/Na-ion half-and full-cell batteries. Chem. Eng. J. 417, 129106 (2021). https://doi.org/10.1016/j.cej.2021.129106

    Article  CAS  Google Scholar 

  18. L.-M. Yu, J.-M. Wang, P. Qu, B.-X. Liu, T.-T. Luo, L.-M. Liu, Y.-R. Xin, X.-Q. Hao, M.-P. Song, [KNbO3]1x[BaCo1/2Nb1/2O3δ]x inorganic perovskite oxide coupled with TiO2 nanorods photoelectrode: toward efficient enhancement of photoelectrochemical properties. Mater. Chem. Phys. 264, 124426 (2021). https://doi.org/10.1016/j.matchemphys.2021.124426

    Article  CAS  Google Scholar 

  19. X. Lu, F. Luo, Q. Tian, W. Zhang, Z. Sui, J. Chen, Anatase TiO2 nanowires intertangled with CNT for conductive additive-free lithium-ion battery anodes. J. Phys. Chem. Solids 153, 110037 (2021). https://doi.org/10.1016/j.jpcs.2021.110037

    Article  CAS  Google Scholar 

  20. H. Zhu, J. Tao, X. Dong, Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. J. Phys. Chem. C 114, 2873–2879 (2010). https://doi.org/10.1021/jp9085987

    Article  CAS  Google Scholar 

  21. D. Pan, X. Zhang, X. Hou, Y. Han, M. Chu, B. Chen, L. Jia, K. Kondoh, S. Li, TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting. Mater. Sci. Eng. A 799, 140137 (2021). https://doi.org/10.1016/j.msea.2020.140137

    Article  CAS  Google Scholar 

  22. Z. Chen, D. Pan, Z. Li, Z. Jiao, M. Wu, C.-H. Shek, C.M.L. Wu, J.K.L. Lai, Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem. Rev. 114, 7442–7486 (2014). https://doi.org/10.1021/cr4007335

    Article  CAS  Google Scholar 

  23. P. Chetri, J.C. Dhar, Improved photodetector performance of SnO2 nanowire by optimized air annealing. Semicond. Sci. Technol. 35, 045014 (2020). https://doi.org/10.1088/1361-6641/ab7434

    Article  CAS  Google Scholar 

  24. Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 634, 37–42 (2015). https://doi.org/10.1016/j.jallcom.2015.02.060

    Article  CAS  Google Scholar 

  25. X. Wang, J. Liao, R. Du, G. Wang, N. Tsidaeva, W. Wang, Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping. J. Colloid Interface Sci. 590, 186–198 (2021). https://doi.org/10.1016/j.jcis.2021.01.069

    Article  CAS  Google Scholar 

  26. M. Nasiri, S.M. Rozati, Muscovite mica as a flexible substrate for transparent conductive AZO thin films deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 81, 38–43 (2018). https://doi.org/10.1016/j.mssp.2018.03.009

    Article  CAS  Google Scholar 

  27. N. Akcay, Effect of fluorine doping concentration on efficiency of ZnO/p-Si heterojunction solar cells fabricated by spray pyrolysis. J. Mater. Sci.: Mater. Electron. 31, 22467–22477 (2020). https://doi.org/10.1007/s10854-020-04747-z

    Article  CAS  Google Scholar 

  28. Y. Nonoguchi, A. Tani, T. Ikeda, C. Goto, N. Tanifuji, R.M. Uda, T. Kawai, Water-processable, air-stable organic nanoparticle-carbon nanotube nanocomposites exhibiting n-type thermoelectric properties. Small 13, 1603420 (2017). https://doi.org/10.1002/smll.201603420

    Article  CAS  Google Scholar 

  29. D. Li, S. Li, X. Li, B. Yang, H. Zhong, Efficiently synthesized n-type CoSb3 thermoelectric alloys under TGZM effect. Mater. Sci. Semicond. Process. 123, 105542 (2021). https://doi.org/10.1016/j.mssp.2020.105542

    Article  CAS  Google Scholar 

  30. Y. Chang, J. Chen, J. Jia, X. Hu, H. Yang, M. Jia, Z. Wen, The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl. Catal. B 284, 119721 (2021). https://doi.org/10.1016/j.apcatb.2020.119721

    Article  CAS  Google Scholar 

  31. W. Ni, Y. Xue, X. Zang, C. Li, H. Wang, Z. Yang, Y.-M. Yan, Fluorine doped cagelike carbon electrocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528

    Article  CAS  Google Scholar 

  32. J. Zhu, H. Chu, J. Shen, C. Wang, Y. Wei, Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing. J. Colloid Interface Sci. 586, 683–691 (2021). https://doi.org/10.1016/j.jcis.2020.10.138

    Article  CAS  Google Scholar 

  33. M. Wang, Q. Gao, H. Duan, M. Ge, Scalable synthesis of high-purity TiO2 whiskers via ion exchange method enables versatile applications. RSC Adv. 9, 23735–23743 (2019). https://doi.org/10.1039/c9ra03870a

    Article  CAS  Google Scholar 

  34. B. Song, B. Zhao, Y. Lu, S. Wei, B. Fan, X. Zhang, R. Zhang, Investigation on the growth mechanism of SiC whiskers during microwave synthesis. Phys. Chem. Chem. Phys. 20, 25799–25805 (2018). https://doi.org/10.1039/C8CP05461D

    Article  CAS  Google Scholar 

  35. S. Kumar, A. Dvivedi, Micro-ultrasonic drilling of monocrystalline silicon: an experimental investigation on machined surface topography and optimization using user’s preference rating based TOPSIS. Mater. Sci. Semicond. Process. 102, 104584 (2019). https://doi.org/10.1016/j.mssp.2019.104584

    Article  CAS  Google Scholar 

  36. S.-Q. Liu, C.-F. Dai, L. Wang, S.-P. Li, X.-D. Li, Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method. J. Phys. Chem. Solids 79, 82–88 (2015). https://doi.org/10.1016/j.jpcs.2014.12.009

    Article  CAS  Google Scholar 

  37. W. Choi, J.H. Choi, H. Park, Electrocatalytic activity of metal-doped SnO2 for the decomposition of aqueous contaminants: Ta-SnO2 vs. Sb-SnO2. Chem. Eng. J. 409, 128175 (2021). https://doi.org/10.1016/j.cej.2020.128175

    Article  CAS  Google Scholar 

  38. X. Li, J. Qian, J. Li, K. Tang, Antimony-doped SnO2 nanoparticles-decorated TiO2 composite with enhanced electrical properties. Funct. Mater. Lett. 13, 1951005 (2020). https://doi.org/10.1142/S1793604719510056

    Article  CAS  Google Scholar 

  39. M. Kaikanov, B. Amanzhulov, G. Demeuova, G. Akhtanova, F. Bozheyev, A. Kemelbay, A. Tikhonov, Modification of silver nanowire coatings with intense pulsed ion beam for transparent heaters. Nanomaterials 10, 2153 (2020). https://doi.org/10.3390/nano10112153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Natural Science Foundation of China (No. 51803076), Natural Science Foundation of Jiangsu Province of China (No. BK20180629), and Fundamental Research Funds for the Central Universities of China (JUSRP121026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiao Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Pang, Z., Jin, F. et al. Precipitation method to prepare conductive F-doped SnO2-coated rutile TiO2 whisker and its application in coating. J Mater Sci: Mater Electron 32, 20583–20597 (2021). https://doi.org/10.1007/s10854-021-06569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06569-z

Navigation