Skip to main content
Log in

Hydrothermal Synthesis of TiO2@Sb-SnO2 Nanocomposites Starting from Titanate Whiskers, SnCl4, and SbCl3 and their Electric Conductivity

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In our present work, we report the synthesis of Sb-doped SnO2-coated TiO2 (TiO2@Sb-SnO2) conductive nanocomposites by hydrothermal method. Firstly, titanate whiskers were hydrothermally synthesized at 175 °C using sodium hydroxide and metatitanic acid as starting materials with a molar ratio of 4:1. And then, the TiO2@Sb-SnO2 nanocomposites were hydrothermally synthesized with the use of the as-synthesized titanate whiskers, tin tetrachloride, and antimony trichloride as starting materials at 185 °C. In the hydrothermal reaction process, Sb-doped SnO2 nanoparticles enhanced the phase transition from titanate to rutile TiO2. The oxidation states of tin and antimony elements are Sn4+, Sb5+, and Sb3+, respectively. TEM and HRTEM analyses indicated that the Sb-doped SnO2 nanoparticles with an average particle size of around 1.5 nm were coated on the surfaces of TiO2 nanoparticulates with an average particle size of around 20 nm. The TiO2@(1%)Sb-(10%)SnO2 nanocomposites had a minimum electric resistivity of 5.97 × 103 Ω·cm. Filling of the TiO2@Sb-SnO2 nanocomposites increased the electric conductivity of waterborne polyester films, endowing the polyester films with static electron dissipativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Chen, P. Xue, and M. Jia, The Property of Polycarbonate/Acrylonitrile Butadiene Styrene-Based Conductive Composites Filled by Nickel-Coated Carbon Fiber and Nickel-Graphite Powder, Polym. Composite, 2017, 38, p 157–163.

    Article  CAS  Google Scholar 

  2. T. Wang, H. Ge, and K. Zhang, A Novel Core-Shell Silica@Graphene Straticulate Structured Antistatic Anticorrosion Composite Coating, J. Alloys Compd., 2018, 745, p 705–715.

    Article  CAS  Google Scholar 

  3. X. Li, J. Qian, J. Xu, Y. Sun, and L. Liu, Synthesis and Electrical Properties of Antimony-Doped Tin Oxide-Coated TiO2 by Polymeric Precursor Method, Mat. Sci. Semicon. Proc., 2019, 98, p 70–76.

    Article  CAS  Google Scholar 

  4. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, Sensing Properties of Sprayed Antimony Doped Tin Oxide Thin Films: Solution Molarity, J. Alloys Compd., 2011, 509, p 3108–3115.

    Article  CAS  Google Scholar 

  5. Y.D. Wang, I. Djerdj, M. Antonietti, and B. Smarsly, Polymer-Assisted Generation of Antimony-Doped SnO2 Nanoparticles with High Crystallinity for Application in Gas Sensors, Small, 2008, 4, p 1656–1660.

    Article  CAS  PubMed  Google Scholar 

  6. J. Guo, Z. Chen, Z.M. El-Bahy, H. Liu, H.M. Abo-Dief, W. Abdul, K.M. Abualnaja, A.K. Alanazi, P. Zhang, M. Huang, G. Hu, and J. Zhu, Tunable Negative Dielectric Properties of Magnetic CoFe2O4/Graphite-Polypyrrole Metacomposites, Adv. Compos. Hybrid Mater., 2022, 5, p 899–906.

    Article  CAS  Google Scholar 

  7. T. Liu, Z. Li, T. Jiang, S. Xi, Y. Li, J. Guo, M. Huang, H. Algadi, X. Ye, and Q. Jiang, Improvement of Thermodynamic Properties of Poly(Butanediol Sebacate-Butanediol Terephthalate) (PBSeT) Composites Based on the Dispersion of PCaCO3@Tannic Acid Formed by Complexation of Tannic Acid and Ti, Adv. Compos. Hybrid Mater., 2022, 5, p 2787–2800.

    Article  Google Scholar 

  8. A. Wang, D. Yu, H. Yin, and W. Yuan, Preparation of Bimetallic CuxAgy Nanoparticles and their Catalytic Performance in Hydrogenation of 4-Nitrophenol with H2 to 4-Aminophenol, Catal. Lett., 2022, 152, p 3691–3703.

    Article  ADS  CAS  Google Scholar 

  9. M. Eqi, C. Shi, J. Xie, F. Kang, H. Qi, X. Tan, Z. Huang, J. Liu, and J. Guo, Synergetic Effect of Ni-Au Bimetal Nanoparticles on Urchin-Like TiO2 for Hydrogen and Arabinose Co-Production by Glucose Photoreforming, Compos. Hybrid Mater., 2023, 6, p 5.

    Article  CAS  Google Scholar 

  10. W. Cao, A. Wang, and H. Yin, Preparation of TiO2@ZrO2@SiO2@MAA Nanocomposites and Impact of Layer Structure on Pigmentary Performance, Mater. Chem. Phys., 2021, 263, p 124403.

    Article  CAS  Google Scholar 

  11. L. Shen, W. Cao, A. Wang, and Hengbo Yin, Preparation of TiO2@ZrO2@AlOOH@Polymethyl Acrylic Acid Nanocomposites and the Impact of Layer Structure on Color Scheme, Photocatalytic Activity, and Dispersion Stability, Ind. Eng. Chem. Res., 2020, 59, p 21811–21821.

    Article  CAS  Google Scholar 

  12. D. Fang, H. Yu, M. Dirican, Y. Tian, J. Xie, D. Jia, C. Yan, Y. Liu, C. Li, H. Liu, J. Wang, F. Tan, G. Chen, X. Zhang, and J. Tao, Disintegrable, Transparent and Mechanically Robust High-Performance Antimony Tin Oxide/Nanocellulose/Polyvinyl Alcohol Thermal Insulation Films, Carbohyd. Polym., 2021, 266, p 118175.

    Article  CAS  Google Scholar 

  13. J. Qu, J. Song, J. Qin, Z. Song, W. Zhang, Y. Shi, T. Zhang, H. Zhang, R. Zhang, Z. He, and X. Xue, Transparent Thermal Insulation Coatings for Energy Efficient Glass Windows and Curtain Walls, Energ. Build., 2014, 77, p 1–10.

    Article  Google Scholar 

  14. M. Wang, Y. Xu, Y. Liu, W. Wu, and S. Xu, Synthesis of Sb-Doped SnO2 (ATO) Hollow Microspheres and Its Application in Photo-Thermal Shielding Coating, Prog. Org. Coat., 2019, 136, p 105229.

    Article  CAS  Google Scholar 

  15. H. Li, L. Song, H. Liu, J. Li, A. Yang, C. Sun, R. Li, Y. Fu, and C. Yu, Antimony-Doped Tin Oxide Embedding Graphene-Based Aerogel for Infrared Barriering, Ceram. Int., 2019, 45, p 7894–7905.

    Article  CAS  Google Scholar 

  16. B. Shen, Y. Wang, L. Lu, and H. Yang, pH-Dependent Doping Level and Optical Performance of Antimony-Doped Tin Oxide Nanocrystals as Nanofillers of Spectrally Selective Coating for Energy-Efficient Windows, Ceram. Int., 2021, 47, p 20335–20340.

    Article  CAS  Google Scholar 

  17. J. Mazloom, F.E. Ghodsi, and M. Gholami, Fiber-Like Stripe ATO (SnO2:Sb) Nanostructured Thin Films Grown by Sol-Gel Method: Optical, Topographical and Electrical Properties, J. Alloys Compound, 2013, 579, p 384–393.

    Article  CAS  Google Scholar 

  18. S.Y. Yang, D. Kim, and H. Park, Shift of the Reactive Species in the Sb−SnO2-Electrocatalyzed Inactivation of E. Coli and Degradation of Phenol: Effects of Nickel Doping and Electrolytes, Environ. Sci. Technol., 2014, 48, p 2877–2884.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. X. Cui, G. Zhao, Y. Lei, H. Li, P. Li, and M. Liu, Novel Vertically Aligned TiO2 Nanotubes Embedded with Sb-Doped SnO2 Electrode with High Oxygen Evolution Potential and Long Service Time, Mater. Chem. Phys., 2009, 113, p 314–321.

    Article  CAS  Google Scholar 

  20. S. Man, H. Bao, K. Xu, H. Yang, Q. Sun, L. Xu, W. Yang, Z. Mo, and X. Li, Preparation and Characterization of Nd-Sb co-Doped SnO2 Nanoflower Electrode by Hydrothermal Method for the Degradation of Norfloxacin, Chem. Eng. J., 2021, 417, p 129266.

    Article  CAS  Google Scholar 

  21. Z. Liu, M. Zhu, L. Zhao, C. Deng, J. Ma, Z. Wang, H. Liu, and H. Wang, Aqueous Tetracycline Degradation by Coal-Based Carbon Electrocatalytic Filtration Membrane: Effect of Nano Antimony-Doped Tin Dioxide Coating, Chem. Eng. J., 2017, 314, p 59–68.

    Article  Google Scholar 

  22. Y. Sun, W.D. Chemelewski, S.P. Berglund, C. Li, H. He, G. Shi, and C.B. Mullins, Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite, ACS Appl. Mater. Interfaces, 2014, 6, p 5494–5499.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Zhang, Q. Shao, B. Zhao, B. Zhang, V. Murugadoss, S. Wu, T. Ding, and Z. Guo, Facile Bioactive Yeast Cell Templated Synthesis of Laser Stealth Antimony Doped Tin Oxide Hollow Microspheres, Colloid Surface A, 2019, 583, p 123965.

    Article  CAS  Google Scholar 

  24. Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, and J. Huang, Low Temperature Solution-Processed Sb:SnO2 Nanocrystals for Efficient Planar Perovskite Solar Cells, Chemsuschem, 2016, 9, p 2686–2691.

    Article  CAS  PubMed  Google Scholar 

  25. I.M. Costa, Y.N. Colmenares, P.S. Pizani, E.R. Leite, and A.J. Chiquito, Sb Doping of VLS Synthesized SnO2 Nanowires Probed by Raman and XPS Spectroscopy, Chem. Phys. Lett., 2018, 695, p 125–130.

    Article  ADS  CAS  Google Scholar 

  26. S.D. Ponja, B.A.D. Williamson, S. Sathasivam, D.O. Scanlon, I.P. Parkin, and C.J. Carmalt, Enhanced Electrical Properties of Antimony Doped Tin Oxide Thin Films Deposited via Aerosol Assisted Chemical Vapour Deposition, J. Mater. Chem. C, 2018, 6, p 7257–7266.

    Article  CAS  Google Scholar 

  27. J. Montero, J. Herrero, and C. Guillén, Preparation of Reactively Sputtered Sb-Doped SnO2 Thin Films: Structural, Electrical and Optical Properties, Sol. Energ. Mat. Sol. C., 2010, 94, p 612–616.

    Article  CAS  Google Scholar 

  28. J. Ni, X. Zhao, X. Zheng, J. Zhao, and B. Liu, Electrical, Structural, Photoluminescence and Optical Properties of p-Type Conducting, Antimony-Doped SnO2 Thin Films, Acta Mater., 2009, 57, p 278–285.

    Article  ADS  CAS  Google Scholar 

  29. S.S. Lekshmy, G.P. Daniel, and K. Joy, Microstructure and Physical Properties of Sol Gel Derived SnO2: Sb Thin Films for Optoelectronic Applications, Appl. Surf. Sci., 2013, 274, p 95–100.

    Article  ADS  CAS  Google Scholar 

  30. V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, and D. Fattakhova-Rohlfïng, Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol-Gel Procedure, Chem. Mater., 2009, 21, p 5229–5236.

    Article  Google Scholar 

  31. M. Zhang, Y. Wang, Y. Ma, X. Wang, B. Zhao, and W. Ruan, Study of Charge Transfer Effect in Surface-Enhanced Raman Scattering (SERS) by Using Antimony-Doped Tin Oxide (ATO) Nanoparticles as Substrates with Tunable Optical Band Gaps and Free Charge Carrier Densities, Spectrochim. Acta A, 2022, 264, p 120288.

    Article  CAS  Google Scholar 

  32. J. Zhang, J. Zuo, Y. Jiang, A. Ju, D. Zhu, J. Zhang, and C. Wei, Synthesis and Characterization of Composite Conductive Powders Prepared by Sb-SnO2-Coated Coal Gasification Fine Slag Porous Microbeads, Powder Technol., 2021, 385, p 409–417.

    Article  CAS  Google Scholar 

  33. Z. Chen, M. Gu, F. Wang, C. Gao, P. Liu, Y. Ding, S. Zhang, and M. Yang, Conductive TiO2 Nanorods via Surface Coating by Antimony Doped Tin Dioxide, Mater. Chem. Phys., 2019, 225, p 181–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our present work was financially supported by the fund from the Liaoning Science and Technology Department, China (2021JH1/10400063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aili Wang or Hengbo Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Wang, A., Yin, H. et al. Hydrothermal Synthesis of TiO2@Sb-SnO2 Nanocomposites Starting from Titanate Whiskers, SnCl4, and SbCl3 and their Electric Conductivity. J. of Materi Eng and Perform 33, 1506–1517 (2024). https://doi.org/10.1007/s11665-023-08070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08070-6

Keywords

Navigation