Skip to main content
Log in

CoZnFeO4 prepared by waste ferrous sulfate as iron source: synthesis, characterization and photocatalytic degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a ferrate material with a narrow band gap and rapid electron hole separation ability is synthesized for degrading methylene blue from industrial wastewater. Hard ferrite (CoZnFeO4) with octahedral structure is synthesized by solid-phase method from waste ferrous sulfate. The structure of the catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTPR) and scanning electron microscopy (SEM). TPR study showed that the oxidation performance of CoZnFeO4 is improved with the addition of cobalt. The total organic carbon removal rate of methylene blue over CoZnFeO4 catalyst is 90% within 60 min. The effects of reaction time, pollutant concentration, catalyst dosage and oxidant concentration on the removal efficiency were optimized. ESI–MS demonstrated the stability of the catalyst for leaching. X-ray diffractometry (XRD) and X-ray energy dispersive spectroscopy (XPS) showed that the catalyst could be reused. These findings provide a low cost and simple strategy for rational design and modulation of catalysts for the industrial degradation of organic pollutants. It not only realizes the use of waste to treat waste, but also accords with the current concept of green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. H. Zollinger, Color chemistry: synthesis, properties and applications of organic dyes and pigments. Leonardo. 22(3/4), 313–314 (1989). https://doi.org/10.2307/1575449

    Article  Google Scholar 

  2. A. Hassani, L. Alidokht, A.R. Khataee, S. Karaca, Optimization of comparative removal of two structurally different basic dyes using coal as a low-cost and available adsorbent. J. Taiwan Inst. Chem. Eng. 45(4), 1597–1607 (2014). https://doi.org/10.1016/j.jtice.2013.10.014

    Article  CAS  Google Scholar 

  3. A. Hassani, R.D.C. Soltani, M. Kiransan, S. Kiransan, C. Karaca, A. Khataee, Ultrasound-assisted adsorption of textile dyes using modified nanoclay: central composite design optimization. Korean J. Chem. Eng. 33(1), 178–188 (2016). https://doi.org/10.1007/s11814-015-0106-y

    Article  CAS  Google Scholar 

  4. C.H. Chen, Y.H. Liang, W.D. Zhang, ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J. Alloys Compd. 501(1), 168–172 (2010). https://doi.org/10.1016/j.jallcom.2010.04.072

    Article  CAS  Google Scholar 

  5. W.F. Xui, X.J. Yuan, D.S. Xia, Preparation of nanometer zinc ferrite and its application in water treatment. Technol. Water Treat. (2020). https://doi.org/10.16796/j.cnki.1000-3770.2020.07.002

    Article  Google Scholar 

  6. T. Wu, G. Liu, J. Zhao, Photo-assisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102(3), 5845–5851 (1998). https://doi.org/10.1021/jp980922c

    Article  CAS  Google Scholar 

  7. A.B. Prevot, A. Basso, C. Baiocchi, M. Pazzi, G. Marci, V. Augugliaro, L. Palumisano, E. Pramauro, Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye. Anal. Bioanal. Chem. 378(1), 214–220 (2016). https://doi.org/10.1007/s00216-003-2286-2

    Article  CAS  Google Scholar 

  8. D.S. Nair, M. Kurian, Heterogeneous catalytic oxidation of persistent chlorinated organics over cobalt substituted zinc ferrite nanoparticles at mild conditions: reaction kinetics and catalyst reusability studies. J. Environ. Chem. Eng. 5(1), 964–974 (2017). https://doi.org/10.1016/j.jece.2017.01.021

    Article  CAS  Google Scholar 

  9. S.B. Somvanshi, P.B. Kharat, T.S. Saraf, Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater. Res. Innov. (2020). https://doi.org/10.1080/14328917.2020.1769350

    Article  Google Scholar 

  10. S.R. Patade, D.D. Andhare, S.B. Somvanshi, Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.029

    Article  Google Scholar 

  11. P.B. Kharat, S.B. Somvanshi, P.P. Khirade, Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega (2020). https://doi.org/10.1021/acsomega.0c03332

    Article  Google Scholar 

  12. V.L. Ranganatha, S. Pramila, G. Nagaraju, Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04295-6

    Article  Google Scholar 

  13. R.M. Sharma, S. Bansal, S. Singhal, Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv. 5(8), 6006–6018 (2015). https://doi.org/10.1039/C4RA13692F

    Article  CAS  Google Scholar 

  14. B. Sheng, Status and development of titanium dioxide industry in 2019. Iron Steel Vanadium Titanium. https://doi.org/10.7513/j.issn.1004-7638.2019.04.001

  15. Y.L. Qiao, L. Ning, Development application, research and production of titanium dioxide in China. Chem. Ind. Eng. Prog. 34(3), 524–535 (1997). https://doi.org/10.1016/S1872-2067(12)60548-8

    Article  CAS  Google Scholar 

  16. P. Brax, C. Burrage, Constraining disformally coupled scalar fields. Phys. Rev. D (2014). https://doi.org/10.1103/PhysRevD.90.104009

    Article  Google Scholar 

  17. J.T. Spadaro, L. Isabelle, V. Renganathan, Hydroxyl radical-mediated dradation of azo dyes: evidence for benzene generation. Environ. Sci. Technol. 28(7), 1389–1393 (1994). https://doi.org/10.1021/es00056a031

    Article  CAS  Google Scholar 

  18. L. Wolski, M. Ziolek, Insight into pathways of methylene blue degradation with H2O2 over mono and bimetallic Nb, Zn oxides. Appl. Catal. B 224(17), 634–647 (2018). https://doi.org/10.1016/j.apcatb.2017.11.008

    Article  CAS  Google Scholar 

  19. D.S. Nair, M. Kurian, Heterogeneous catalytic oxidation of persistent chlorinated organics over cobalt substituted zinc ferrite nanoparticles at mild conditions: reaction kinetics and catalyst reusability studies. J. Environ. Chem. Eng. 5(1), 964–974 (2018). https://doi.org/10.1016/j.jece.2017.01.021

    Article  CAS  Google Scholar 

  20. L. Chen, D.H. Ding, C. Liu, H. Cai, Y. Qu, S.J. Yang, Y. Gao, T.M. Cai, Decolorization of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration. Chem. Eng. J. 334(15), 273–284 (2018). https://doi.org/10.1016/j.cej.2017.10.040

    Article  CAS  Google Scholar 

  21. S.D. Li, H.S. Wang, W.M. Li, X.F. Wu, W.X. Tang, Y.F. Chen, Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Appl. Catal. B 166–167, 260–269 (2015). https://doi.org/10.1016/j.apcatb.2014.11.040

    Article  CAS  Google Scholar 

  22. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982). https://doi.org/10.1524/zpch.1969.63.14.220

    Book  Google Scholar 

  23. P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707), 152–155 (1998). https://doi.org/10.1038/24132

    Article  CAS  Google Scholar 

  24. Y.J. Yao, G.D. Wu, F. Lu, S.B. Wang, Y. Hu, J. Zhang, W.Z. Huang, F.Y. Wei, Enhanced photo-Fenton-like process over Z-scheme cofe2o4/g-C3N4 heterostructures under natural indoor light. Environ. Sci. Pollut. Res. 23(21), 21833–21845 (2016). https://doi.org/10.1007/s11356-016-7329-2

    Article  CAS  Google Scholar 

  25. M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic decolorization of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram. Int. 43(1), 540–548 (2017). https://doi.org/10.1016/j.ceramint.2016.09.191

    Article  CAS  Google Scholar 

  26. D.F. Zhang, F.B. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J. Mater. Sci. 47(5), 2155–2161 (2012). https://doi.org/10.1007/s10853-011-6016-4

    Article  CAS  Google Scholar 

  27. S. Asuha, B. Suyala, S. Zhao, Porous structure and Cr(VI) removal abilities of Fe3O4 prepared from Feurea complex. Mater. Chem. Phys. 129(1–2), 483–487 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.044

    Article  CAS  Google Scholar 

  28. Y. Xing, Y.Y. Yin, J.C. Si, M.L. Peng, X.F. Wang, C. Chen, Y.L. Cui, Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles. J. Magn. Magn. Mater. 380, 150–156 (2015). https://doi.org/10.1016/j.jmmm.2014.09.060

    Article  CAS  Google Scholar 

  29. A. Zielińska-Jurek, B. Zuzanna, D. Szymon, Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts 7(12), 360 (2017). https://doi.org/10.3390/catal7120360

    Article  CAS  Google Scholar 

  30. M. Kosmulski, C. Saneluta, Point of zero charge/isoelectric point of exotic oxides: Tl2O3. J. Colloid Interface Sci. 280(2), 544–545 (2004). https://doi.org/10.1016/j.jcis.2004.08.079

    Article  CAS  Google Scholar 

  31. M. Chandrika, A.V. Ravindra, C. Rajesh, S.D. Ramarao, S.H. Tu, Studies on structural and optical properties of nano ZnFe2O4 and ZnFe2O4-TiO2 composite synthesized by Co-precipitation route. Mater. Chem. Phys. 230, 107–113 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.059

    Article  CAS  Google Scholar 

  32. A. Augustine, A. Pius, Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. J. Water Process Eng. 7, 94–101 (2015). https://doi.org/10.1016/j.jwpe.2015.06.002

    Article  Google Scholar 

  33. H.H. Yang, B.F. Shi, S.L. Wang, Fe oxides loaded on carbon cloth by hydrothermal process as an effective and reusable heterogenous Fenton catalyst. Catalysts 8(5), 207 (2018). https://doi.org/10.3390/catal8050207

    Article  CAS  Google Scholar 

  34. W. Chu, W.K. Choy, The mechanisms of rate enhancing and quenching of trichloroethene photodecay in the presence of sensitizer and hydrogen sources. Water Res. 36(10), 2525–2532 (2002). https://doi.org/10.1016/S0043-1354(01)00471-7

    Article  CAS  Google Scholar 

  35. D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants. Environ. Sci. Technol. 9(9), 25 (1991). https://doi.org/10.1021/es00021a001

    Article  Google Scholar 

  36. D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants. Environ. Sci. Technol. (1991). https://doi.org/10.1021/es00021a001

    Article  Google Scholar 

  37. I. Ilisz, K. Foglein, A.J. Dombj, The photochemical behavior of hydrogen peroxide in near UV-irradiated aqueous TiO2 suspensions. J. Mol. Catal. A Chem. 135(1), 55–61 (1998). https://doi.org/10.1016/S1381-1169(97)00296-3

    Article  CAS  Google Scholar 

  38. R.M. Gao, J. Stark, D.W. Bahnemann, J. Rabani, Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J. Photochem. Photobiol. A 148(1–3), 387–391 (2002). https://doi.org/10.1016/s1010-6030(02)00066-7

    Article  CAS  Google Scholar 

  39. X.F. Xue, K. Hanna, M. Abdelmoula, N.S. Deng, Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations. Appl. Catal. B 89(3–4), 432–440 (2009). https://doi.org/10.1016/j.apcatb.2008.12.024

    Article  CAS  Google Scholar 

  40. S.X. Zha, Y. Cheng, Y. Gao, Z.L. Chen, M. Megharej, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem. Eng. J. 255, 141–148 (2014). https://doi.org/10.1016/j.cej.2014.06.057

    Article  CAS  Google Scholar 

  41. R.A. Doong, W.H. Chang, Photodegradation of parathion in aqueous titanium dioxide and zero valent iron solutions in the presence of hydrogen peroxide. J. Photochem. Photobiol. A 116(3), 221–228 (1998). https://doi.org/10.1016/S1010-6030(98)00292-5

    Article  CAS  Google Scholar 

  42. Y.J. Yao, G.D. Wu, F. Lu, S.B. Wang, Y. Hu, J. Zhang, H.Z. Huang, F.Y. Wei, Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light. Environ. Sci. Pollut. Res. 23(21), 21833–21845 (2016). https://doi.org/10.1007/s11356-016-7329-2

    Article  CAS  Google Scholar 

  43. R.M. Sharma, S. Bansal, S. Singhal, Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M=Cu, Zn, Ni and Co) in the structure. RSC Adv. 5(8), 6006–6018 (2015). https://doi.org/10.1039/C4RA13692F

    Article  CAS  Google Scholar 

  44. Z.Q. He, C. Gao, M.Q. Qian, Y.Q. Shi, J.M. Chen, S. Song, Electro-Fenton process catalyzed by Fe3O4 magnetic nanoparticles for decolorization of C.I. Reactive Blue 19 in aqueous solution: operating conditions. Influence, and mechanism. Ind. Eng. Chem. Res. 53(9), 3435–3447 (2014). https://doi.org/10.1021/ie403947b

    Article  CAS  Google Scholar 

  45. Y.Y. Zhu, Y. Min, V.K. Natarajian, Efficient activation of persulfate by Fe3O4@β-cyclodextrin nanocomposite for removal of bisphenol A. RSC Adv. 8(27), 14879–14887 (2018). https://doi.org/10.1039/C8RA01696H

    Article  CAS  Google Scholar 

  46. Z.H. Diao, Q. Wei, P.R. Guo, Photo-assisted degradation of bisphenol A by a novel FeS2@SiO2 microspheres activated persulphate process: synergistic effect, pathway and mechanism. Chem. Eng. J. 349, 683–693 (2018). https://doi.org/10.1016/j.cej.2018.05.132

    Article  CAS  Google Scholar 

  47. T.R. Gordon, A.L. Marsh, Temperature dependence of the oxidation of 2-chlorophenol by hydrogen peroxide in the presence of goethite. Catal. Lett. 132(3–4), 349–354 (2009). https://doi.org/10.1007/s10562-009-0125-6

    Article  CAS  Google Scholar 

  48. H.Y. Xu, M. Prasad, Y. Liu, Schorl: a novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. J. Hazard. Mater. 165(1–3), 1186–1192 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.108

    Article  CAS  Google Scholar 

  49. Q. Liao, J. Sun, L. Gao, Decolorization of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts. Colloid Surf. A 345(1–3), 95–100 (2009). https://doi.org/10.1016/j.colsurfa.2009.04.037

    Article  CAS  Google Scholar 

  50. J.H. Sun, S.P. Sun, G.L. Wang, L.P. Qiao, Decolorization of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes Pigm. 74(3), 647–652 (2007). https://doi.org/10.1016/j.dyepig.2006.04.006

    Article  CAS  Google Scholar 

  51. F.J. Millero, S. Sotolongo, The oxidation of Fe(II) with H2O2 in seawater. Geochim. Cosmochim. Acta 53(8), 1867–1873 (1989). https://doi.org/10.1016/0016-7037(89)90307-4

    Article  CAS  Google Scholar 

  52. S.P. Sun, C.J. Li, J.H. Sun, S.H. Shi, M.H. Fan, Q. Zhan, Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. J. Hazard. Mater. 161(2–3), 1052–1057 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.080

    Article  CAS  Google Scholar 

  53. S.D. Khairhal, V.S. Shrivastava, Photocatalytic decolorization of chlorpyrifos and methylene blue using α-Bi2O3 nanoparticles fabricated by sol–gel method. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0761-4

    Article  Google Scholar 

  54. S. Jauhar, S. Singhal, Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted decolorization of cationic and anionic dyes: their synthesis and characterization. Appl. Catal. A 486, 210–218 (2014). https://doi.org/10.1016/j.apcata.2014.08.020

    Article  CAS  Google Scholar 

  55. S.F. Chen, W. Zhao, W. Liu, H.Y. Zhang, X.L. Yu, Y.H. Chen, Preparation, characterization and activity evaluation of p-n junction photocatalyst-CaFe2O4n-ZnO. Chem. Eng. J. 155, 466–473 (2009). https://doi.org/10.1016/j.cej.2009.07.009

    Article  CAS  Google Scholar 

  56. S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Y. Chen, Preparation, characterization and activity evaluation of p-n junction photocatalyst pCaFe2O4/n-Ag3VO4 under visible light irradiation. J. Hazard. Mater. 172(2–3), 1415–1423 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.007

    Article  CAS  Google Scholar 

  57. C.H. Chen, Y.H. Lian, W.D. Zhang, ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J. Alloys Compd. 501(1), 168–172 (2010). https://doi.org/10.1016/j.jallcom.2010.04.072

    Article  CAS  Google Scholar 

  58. R.C.C. Costa, M.D.F.F. Lelis, L.C.A. Oliveira, J.D. Fabvis, J.D. Ardisson, R.R.V.A. Rios, C.N. Silva, R.M. Lago, Remarkable effect of Co and Mn on the activity of FexMxO promoted oxidation of organic contaminants in aqueous medium with HO. Catal. Commun. 4(10), 525–529 (2003). https://doi.org/10.1016/j.catcom.2003.08.002

    Article  CAS  Google Scholar 

  59. C.H. Bartholomew, Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212(1–2), 17–60 (2001). https://doi.org/10.1016/s0926-860x(00)00843-7

  60. P. Forzatti, L. Lietti, Catalyst deactivation. Catal. Today 52(2–3), 165–181 (1999). https://doi.org/10.1016/S0920-5861(99)00074-7

    Article  CAS  Google Scholar 

  61. S. Choudhary, A. Bisht, S. Mohapatra, Facile synthesis, morphological, structural, photocatalytic and optical properties of CoFe2O4 nanostructures. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-1665-z

    Article  Google Scholar 

  62. M. Felaez, P. Falaras, V. Likodinos, K. Shea, A. Armah, D.L. Cruz, P.S.M. Dunlop, Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the decolorization of microcystin-LR under visible light irradiation. J. Mol. Catal. A 425, 183–189 (2016). https://doi.org/10.1016/j.molcata.2016.09.035

    Article  CAS  Google Scholar 

  63. C.C. Chen, X.Z. Li, W.H. Ma, J.C. Zhao, Effect of transition metal ions on the TiO2-assisted photodecolorization of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 106(2), 318–324 (2002). https://doi.org/10.1021/jp0119025

    Article  CAS  Google Scholar 

  64. Q. Liu, Y.R. Guo, Z.H. Chen, Z.G. Zhang, X.M. Fang, Constructing a novel ternary Fe(III)/graphene/g-C3N4, composite photocatalyst with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect. Appl. Catal. B 183, 231–241 (2016). https://doi.org/10.1016/j.apcatb.2015.10.054

    Article  CAS  Google Scholar 

  65. N.P. Devi, M. Maisnam, Characterizations of sol-gel synthesized and high energy ball milled spinel nanoferrites: MFe2O4 (M=Li, Ni, Zn, Mn) for nanofluid preparations. Integr. Ferroelectr. 204(1), 133–141 (2020). https://doi.org/10.1080/10584587.2019.1674972

    Article  CAS  Google Scholar 

  66. A.K. Srivastava, M. Deepa, N. Bahadur, M.S. Groyat, Influence of Fe doping on nanostructures and photoluminescence of sol-gel derived ZnO. Mater. Chem. Phys. 114(1), 194–198 (2008). https://doi.org/10.1016/j.matchemphys.2008.09.005

    Article  CAS  Google Scholar 

  67. A. Manikandan, J.J. Manikandan, M. Sundararajan, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013). https://doi.org/10.1016/j.spmi.2013.09.021

    Article  CAS  Google Scholar 

  68. G.J. Srinet, R. Kumar, V. Sajal, Effects of aluminum doping on structural and photoluminescence properties of ZnO nanoparticles. Ceram. Int. 40(3), 4025–4031 (2014). https://doi.org/10.1016/j.ceramint.2013.08.055

    Article  CAS  Google Scholar 

  69. B.J. Rani, M. Ravina, B. Saravanakumar, G. Rari, V. Ganesh, S. Ravichandran, R. Yurakkumar, Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Struct. Nano-Objects 14, 84–91 (2018). https://doi.org/10.1016/j.nanoso.2018.01.012

    Article  CAS  Google Scholar 

  70. D.D. Dionysiou, M.T. Suidan, I. Baudim, J.M. Laine, Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuous-mode photocatalytic reactor. Appl. Catal. B: Environ. 50(4), 259–269 (2004). https://doi.org/10.1016/S0926-3373(04)00087-6

    Article  CAS  Google Scholar 

  71. A. Khataee, M. Taseidifar, S. Khorram, M. Sheydaei, Preparation of nanostructured magnetite with plasma for decolorization of a cationic textile dye by the heterogeneous Fenton process. J. Taiwan Inst. Chem. Eng. 53, 132–139 (2015). https://doi.org/10.1016/j.jtice.2015.02.023

    Article  CAS  Google Scholar 

  72. Y. Lei, C.S. Chen, Y.J. Tu, Y.H. Zhang, Heterogeneous decolorization of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environ. Sci. Technol. 49(1), 6838–6845 (2015). https://doi.org/10.1021/acs.est.5b00623

    Article  CAS  Google Scholar 

  73. Y.J. Yao, G.D. Wu, F. Lu, S.B. Wang, Y. Hu, J. Zhang, W.Z. Huang, F. Wei, Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light. Environ. Sci. Pollut. Res. 23(21), 21833–21845 (2016). https://doi.org/10.1007/s11356-016-7329-2

    Article  CAS  Google Scholar 

  74. M. Li, Y.P. Xiong, X.T. Liu, X.J. Zhang, C. Han, L.P. Guo, Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7(19), 8920–8930 (2015). https://doi.org/10.1039/C4NR07243J

    Article  CAS  Google Scholar 

  75. B. Cai, M.G. Zhao, Y. Ma, Z.Z. Ye, J.Y. Huang, Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release. ACS Appl. Mater. Interfaces 7(2), 1327–1333 (2015). https://doi.org/10.1021/am507689a

    Article  CAS  Google Scholar 

  76. L. Lou, A.E. Nelson, G. Heo, P.W. Major, Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS). Appl. Surf. Sci. 254(21), 6706–6709 (2008). https://doi.org/10.1016/j.apsusc.2008.04.085

    Article  CAS  Google Scholar 

  77. J.D. Li, Y.B. Li, L. Zhang, Y. Zuo, Composition of calcium-deficient Na-containing carbonate hydroxyapatite modified with Cu(II) and Zn(II) ions. Appl. Surf. Sci. 254(9), 2844–2850 (2008). https://doi.org/10.1016/j.apsusc.2007.10.030

    Article  CAS  Google Scholar 

  78. G.X. Huang, C.Y. Huang, C.W. Yang, P.C. Guo, H.Q. Yu, Decolorization of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe. Environ. Sci. Technol. 51(21), 12611–12618 (2017). https://doi.org/10.1021/acs.est.7b03007

    Article  CAS  Google Scholar 

  79. A.S. Albuquerque, M.V.C. Tolentino, J.D. Ardisson, F.C.C. Mouraet, R.D. Mendenca, W.A.A. Macedo, Nanostructured ferrites: structural analysis and catalytic activity. Ceram. Int. 38(3), 2225–2231 (2012). https://doi.org/10.1016/j.ceramint.2011.10.071

    Article  CAS  Google Scholar 

  80. S. Lu, G.L. Wang, S. Chen, H.T. Yu, F. Ye, X. Quan, Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for decolorization of organic pollutants. J. Hazard. Mater. 353, 401–409 (2018). https://doi.org/10.1016/j.jhazmat.2018.04.021

    Article  CAS  Google Scholar 

  81. C.X. Yang, W.P. Dong, G.W. Cui, Y.Q. Zhao, X.F. Shi, X.Y. Xia, B. Tang, W.L. Wang, Highly efficient photocatalytic decolorization of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Adv. 7(38), 23699–23708 (2017). https://doi.org/10.1039/C7RA02423A

    Article  Google Scholar 

  82. A.L. Linsebigler, G. Lu, J.T.Y. Lu, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  83. J.T. Spadaro, L. Isabelle, V. Renganathan, Hydroxyl radical-mediated degradation of azo dyes: evidence for benzene generation. Environ. Sci. Technol. 28(7), 1389–1393 (1994). https://doi.org/10.1021/es00056a031

    Article  CAS  Google Scholar 

  84. L. Wolski, M. Ziolek, Insight into pathways of methylene blue degradation with H2O2 over mono and bimetallic Nb, Zn oxides. Appl. Catal. B 224, 634–647 (2018). https://doi.org/10.1016/j.apcatb.2017.11.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by Sichuan University-Panzhihua City Science and Technology Corporation Special Fund Project for Titanium White by-product Ferrous Sulfate Preparation 500 tons/year Nanometer iron Red Pigment and  Co-production Sulfuric Acid Pilot Study Project (No. 2018CDPZH-5), and Sichuan Science and Technology Planning Project (No. 2019YFH0149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Yang or Xiushan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Shu, Y., Zhong, Y. et al. CoZnFeO4 prepared by waste ferrous sulfate as iron source: synthesis, characterization and photocatalytic degradation of methylene blue. J Mater Sci: Mater Electron 32, 20985–21011 (2021). https://doi.org/10.1007/s10854-021-06562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06562-6

Navigation