Skip to main content
Log in

Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we successfully synthesize N-doped carbon nanoribbon (NCNR) from polypyrrole precursor and investigate their dielectric and microwaves absorption (MA) properties. NCNR appears as two-dimensional ribbon-like microstructure with tunable N-doping ratio. The dielectric property of NCNR can be tuned by N-doping content controlling. The results demonstrate that NCNR exhibits excellent MA performance at a filler-loading ratio of only 5 wt%. When the sample thickness is 3.3 mm, the maximal absorption reaches − 73.76 dB at 10.48 GHz. The maximum efficient bandwidth gets to 7.4 GHz (10.6–18 GHz), under a sample thickness of 2.7 mm. A model that refers to conductive loss, polarization relaxation, and impedance match is adopted to explain the MA mechanism of NCNR. This research opens up the exploration of NCNR in the field of MA, and provides a new idea for the design of carbon-related broad band MA materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhang, Y. Huang, T.F. Zhang, H. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    Article  CAS  Google Scholar 

  2. A.M. Xie, F. Wu, M.X. Sun, X.Q. Dai, Z.H. Xu, Y.Y. Qiu, Y. Wang, M.Y. Wang, Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl. Phys. Lett. 106, 222902 (2015)

    Article  CAS  Google Scholar 

  3. A.M. Xie, K. Zhang, M.X. Sun, Y.L. Xia, F. Wu, Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater. Des. 154, 192–202 (2018)

    Article  CAS  Google Scholar 

  4. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Micorwave absorption enhancement and complex permittivity and permeability of feencapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    Article  CAS  Google Scholar 

  5. H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensies. Adv. Mater. 26, 8120–8125 (2014)

    Article  CAS  Google Scholar 

  6. L.N. Sha, P. Gao, T.T. Wu, Y.J. Chen, Chemical Ni–C bonding in Ni–carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 40412–40419 (2017)

    Article  CAS  Google Scholar 

  7. A.M. Xie, F. Wu, W.C. Jiang, K. Zhang, M.X. Sun, M.Y. Wang, Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. J. Mater. Chem. C 5, 2175 (2017)

    Article  CAS  Google Scholar 

  8. X. Tian, F.B. Meng, F.C. Meng, X.N. Chen, Y.F. Guo, Y. Wang, W.J. Zhu, Z.W. Zhou, Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl. Mater. Interfaces 9, 15711–15718 (2017)

    Article  CAS  Google Scholar 

  9. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6, 7471–7478 (2014)

    Article  CAS  Google Scholar 

  10. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Article  CAS  Google Scholar 

  11. X.H. Liang, B. Quan, G.B. Ji, W. Liu, H.Q. Zhao, S.S. Dai, J. Lv, Y.W. Du, Tunable dielectric performance derived from the metal-organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 5, 10570–10579 (2017)

    Article  CAS  Google Scholar 

  12. B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, G. Ji, From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021)

    Article  CAS  Google Scholar 

  13. W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 67, 265–272 (2021)

    Article  Google Scholar 

  14. B. Zhao, C. Ma, L.Y. Liang, W.H. Guo, B.B. Fan, X.Q. Guo, R. Zhang, An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm 19, 3640–3648 (2017)

    Article  CAS  Google Scholar 

  15. B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, Y. Du, Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces 9, 9964–9974 (2017)

    Article  CAS  Google Scholar 

  16. B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, Y. Du, Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018)

    Article  CAS  Google Scholar 

  17. H.L. Lv, Y.H. Guo, G.L. Wu, G.B. Ji, Y. Zhao, Z.C.J. Xu, Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660–5668 (2017)

    Article  CAS  Google Scholar 

  18. E. Pomerantseva, F. Bonaccorso, X.L. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366, 969 (2019)

    Article  CAS  Google Scholar 

  19. H.L. Fei, J.C. Dong, D.L. Chen, T.D. Hu, X.D. Duan, I. Shakir, Y. Huang, X.F. Duan, Single atom electrocatalysts supported on graphene or graphene-like carbons. Soc. Rev. 48, 5207–5241 (2019)

    Article  CAS  Google Scholar 

  20. Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019)

    Article  CAS  Google Scholar 

  21. Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  CAS  Google Scholar 

  22. N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia, B. Zhang, B.Z. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)

    Article  CAS  Google Scholar 

  23. C.H. Choi, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084–7091 (2012)

    Article  CAS  Google Scholar 

  24. P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He, W.H. Huang, J.H. Luo, Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2019)

    Article  CAS  Google Scholar 

  25. D.L. Isac, ŞG. Şoriga, I.C. Man, How do the coadsorbates affect the oxygen reduction reaction activity of undoped and N-doped graphene nanoribbon edges? A density functional theory study. J. Phys. Chem. C 124, 23177–23189 (2020)

    Article  CAS  Google Scholar 

  26. R.C. Wei, Y. Gu, L.L. Zou, B.J. Xi, Y.X. Zhao, Y.N. Ma, Y.T. Qian, S.L. Xiong, Q. Xu, Nanoribbon superstructures of graphene nanocages for efficient electrocatalytic hydrogen evolution. Nano Lett. 20, 7342–7349 (2020)

    Article  CAS  Google Scholar 

  27. M. Zare, R. Asgari, Probing divacancy defects in a zigzag graphene nanoribbon through an RKKY exchange interaction. J. Phys. D 54, 095302 (2021)

    Article  CAS  Google Scholar 

  28. F.P. Pan, B.Y. Li, E. Sarnello, Y.H. Fei, Y. Gang, X.M. Xiang, Z.C. Du, P. Zhang, G.F. Wang, H.T. Nguyen, T. Li, Y.H. Hu, H.C. Zhou, Y. Li, Atomically dispersed iron–nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 14, 5506–5516 (2020)

    Article  CAS  Google Scholar 

  29. M.R. Rezapour, G. Leeand, K.S. Kim, A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. Nanoscale Adv. 2, 5905–5911 (2020)

    Article  CAS  Google Scholar 

  30. R. Zuzak, P. Brandimarte, P. Olszowski, I. Izydorczyk, M. Markoulides, B. Such, M. Kolmer, M. Szymonski, A.G. Lekue, D.S. Portal, A. Gourdon, S. Godlewski, On-surface synthesis of chlorinated narrow graphene nanoribbon organometallic hybrids. J. Phys. Chem. Lett. 11, 10290–10297 (2020)

    Article  CAS  Google Scholar 

  31. Y.Z. Jiao, F. Wu, K. Zhang, M.X. Sun, A.M. Xie, W. Dong, Ultra-broad polypyrrole (PPy) nano-ribbons seeded by racemic surfactants aggregates and their high-performance electromagnetic radiation elimination. Nanotechnology 28, 315701 (2017)

    Article  CAS  Google Scholar 

  32. H. Peng, Z.L. Hou, K.L. Zhang, J. Li, K. Yin, S. Feng, S. Bi, Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 52, 8258–8267 (2017)

    Article  CAS  Google Scholar 

  33. Y.Z. Jiao, S.Y. Cheng, F. Wu, X.H. Panet, A.M. Xie, X.F. Zhu, W. Dong, MOF-Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Compos. B 211, 108643 (2021)

    Article  CAS  Google Scholar 

  34. M. Zhang, M. Cao, J. Shu, W. Cao, L. Li, J. Yuan, Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R 145, 100627 (2021)

    Article  Google Scholar 

  35. M.X. Sun, C. Xu, J.L. Li, L.Q. Xing, T. Zhou, F. Wu, Y.F. Shang, A.M. Xie, Protonic doping brings tuneable dielectric and electromagnetic attenuated properties for polypyrrole nanofibers. Chem. Eng. J. 381, 122615 (2020)

    Article  CAS  Google Scholar 

  36. L.P. Wu, F. Wu, Q.Y. Sun, J.Y. Shi, A.M. Xie, X.F. Zhu, W. Dong, A TTF-TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behaviors. J. Mater. Chem. C 9, 3316–3323 (2021)

    Article  CAS  Google Scholar 

  37. Y.H. Cheng, P. Hu, S.B. Zhou, L.W. Yan, B.Q. Sun, X.H. Zhang, W.B. Han, Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 132, 430–443 (2018)

    Article  CAS  Google Scholar 

  38. S. Dong, W.Z. Zhang, X.H. Zhang, P. Hu, J.C. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018)

    Article  CAS  Google Scholar 

  39. S. Dong, J.T. Song, X.H. Zhang, P. Hu, B.Q. Sun, S.T. Zhou, X.G. Luo, Strong contribution of in situ grown nanowires to enhance the thermostabilities and microwave absorption properties of porous graphene foams under different atmospheres. J. Mater. Chem. C 5, 11837–11846 (2017)

    Article  CAS  Google Scholar 

  40. Y. Hou, L.F. Cheng, Y.N. Zhang, Y. Yang, C.R. Deng, Z.H. Yang, Q. Chen, P. Wang, L.X. Zheng, Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl. Mater. Interfaces 9, 7265–7271 (2017)

    Article  CAS  Google Scholar 

  41. Y.H. Cheng, M.Y. Tan, P. Hu, X.H. Zhang, B.Q. Sun, L.W. Yan, S.B. Zhou, W.B. Han, Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018)

    Article  CAS  Google Scholar 

  42. M. Cao, W. Song, Z. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  CAS  Google Scholar 

  43. Q. Sun, X. Zhang, R. Liu, S. Shen, F. Wu, A. Xie, Nickel-assisted synthesis of magnetic bamboo-shaped N-doped carbon nanostructure for excellent microwaves absorption. Synth. Met. 272, 116644 (2021)

    Article  CAS  Google Scholar 

  44. N. Zhou, Q.D. An, Z.Y. Xiao, S.R. Zhai, Z. Shi, Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv. 7, 45156–45169 (2017)

    Article  CAS  Google Scholar 

  45. M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao, H. Yang, X. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of National Natural Science Foundation of China (Grant No. 51908288, No. 41627801) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingya Sun or Zhen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Yang, Z., Sun, Q. et al. Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption. J Mater Sci: Mater Electron 32, 26151–26160 (2021). https://doi.org/10.1007/s10854-021-06548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06548-4

Navigation