Skip to main content

Advertisement

Log in

Core–shell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reasonable design of composition and microstructure of carbon nanomaterials can significantly enhance their electromagnetic energy conversion, which provides new strategies for expanding their application in the field of microwave absorption. In this study, core–shell nanowires, silver nanowires (AgNW) wrapped by polypyrrole-derived carbon shells (PPyC), have been successfully acquired through in situ polymerization of pyrrole monomers on the surface of AgNW and following carbonization in vacuum atmosphere. Composition, microstructure and microwave absorption properties of the produced hybrid nanowires are characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy and vector network analyzer, respectively. The heterostructured AgNW@PPyC nanowires present increased electrical conductivity and high aspect ratio due to the incorporation of AgNW, which activates multiple loss mechanisms including interfacial polarization, dipole polarization and related relaxation to achieve desirable microwave absorption performance. The AgNW@PPyC nanowires exhibited a minimum reflection loss value of −38.60 dB at the frequency of 10.30 GHz with the thickness of 2.57 mm and an effective absorption bandwidth of 3.53 GHz in the X-band (85%). The core–shell AgNW@PPyC nanowires with tunable composition and unique nanostructure are promising for realizing highly-efficient microwave absorption performance of carbon materials.

Graphical abstract

Homogeneous core–shell AgNW@pyrolytic carbon composites were successfully fabricated through in situ polymerization of pyrrole monomers on the surface of AgNW and subsequent vacuum carbonization. The AgNW@PPyC nanowires exhibited a minimum reflection loss value of −38.60 dB at the frequency of 10.30 GHz with the thickness of 2.57 mm and an effective absorption bandwidth of 3.53 GHz in the X-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yang M, Yuan Y, Yin W et al (2019) Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption. Appl Surf Sci 469:607–616. https://doi.org/10.1016/j.apsusc.2018.10.045

    Article  CAS  Google Scholar 

  2. Xie A, Zhang K, Sun M et al (2018) Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption. Mater Des 154:192–202. https://doi.org/10.1016/j.matdes.2018.05.039

    Article  CAS  Google Scholar 

  3. Liu X, Cui X, Chen Y et al (2015) Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 95:870–878. https://doi.org/10.1016/j.carbon.2015.09.036

    Article  CAS  Google Scholar 

  4. Sun Y, Wang N, Yu H et al (2020) Metal-organic framework-based Fe/C@Co3O4 core-shell nanocomposites with outstanding microwave absorption properties in low frequencies. J Mater Sci 55:7304–7320. https://doi.org/10.1007/s10853-020-04521-w

    Article  CAS  Google Scholar 

  5. Guo Y, Wang D, Bai T et al (2021) Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Compos Hybrid Mater 4:602–613. https://doi.org/10.1007/s42114-021-00279-0

    Article  CAS  Google Scholar 

  6. Yang S, Sun X, Ning Y et al (2022) Effectively tuning electromagnetic absorption of carbon-based nanocomposites by phase transition. Carbon 190:47–56. https://doi.org/10.1016/j.carbon.2021.12.091

    Article  CAS  Google Scholar 

  7. Liu Y, Cui T, Li Y et al (2016) Effects of crystal size and sphere diameter on static magnetic and electromagnetic properties of monodisperse Fe3O4 microspheres. Mater Chem Phys 173:152–160. https://doi.org/10.1016/j.matchemphys.2016.01.053

    Article  CAS  Google Scholar 

  8. Xie A, Jiang W, Wu F et al (2015) Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J Appl Phys 118:204105. https://doi.org/10.1063/1.4936549

    Article  CAS  Google Scholar 

  9. Jiang L, Wang Z, Geng D et al (2016) Carbon-encapsulated Fe nanoparticles embedded in organic polypyrrole polymer as a high performance microwave absorber. J Phys Chem C 120:28320–28329. https://doi.org/10.1021/acs.jpcc.6b09445

    Article  CAS  Google Scholar 

  10. Kang H, Yeo J, Hwang J et al (2011) Simple ZnO nanowires patterned growth by microcontact printing for high performance field emission device. J Phys Chem C 115:11435. https://doi.org/10.1021/jp2019044

    Article  CAS  Google Scholar 

  11. Liu P, Huang Y, Yang Y et al (2016) Sandwich structures of graphene@Fe3O4@PANI decorated with TiO2 nanosheets for enhanced electromagnetic wave absorption properties. J Alloys Compd 662:63–68. https://doi.org/10.1016/j.jallcom.2015.12.022

    Article  CAS  Google Scholar 

  12. Ren Y, Zhu C, Zhang S et al (2013) Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale 5:12296–12303. https://doi.org/10.1039/c3nr04058e

    Article  CAS  Google Scholar 

  13. Wang Q, Lei Z, Chen Y et al (2013) Branched polyaniline/molybdenum oxide organic/inorganic heteronanostructures: synthesis and electromagnetic absorption properties. J Mater Chem A 1:11795. https://doi.org/10.1039/c3ta11591g

    Article  CAS  Google Scholar 

  14. Liu X, Li B, Geng D et al (2009) (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 47:470–474. https://doi.org/10.1016/j.carbon.2008.10.028

    Article  CAS  Google Scholar 

  15. Tian C, Du Y, Xu P et al (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7:20090–20099. https://doi.org/10.1021/acsami.5b05259

    Article  CAS  Google Scholar 

  16. Li X, Yu L, Zhao W et al (2020) Prism-shaped hollow carbon decorated with polyaniline for microwave absorption. Chem Eng J 379:122393. https://doi.org/10.1016/j.cej.2019.122393

    Article  CAS  Google Scholar 

  17. Ding D, Wang Y, Li X et al (2017) Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732. https://doi.org/10.1016/j.carbon.2016.10.059

    Article  CAS  Google Scholar 

  18. Du Y, Liu W, Qiang R et al (2014) Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces 6:12997–13006. https://doi.org/10.1021/am502910d

    Article  CAS  Google Scholar 

  19. Liu P, Gao S, Wang Y et al (2020) Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170:503–516. https://doi.org/10.1016/j.carbon.2020.08.043

    Article  CAS  Google Scholar 

  20. Liang C, Wang Z (2017) Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation. ACS Appl Mater Interfaces 9:40690–40696. https://doi.org/10.1021/acsami.7b13063

    Article  CAS  Google Scholar 

  21. Zhou J, Tao J, Yao Z et al (2021) Ag nanoparticles embedded in multishell carbon nanoparticles for microwave absorption. ACS Appl Nano Mater 4:5425–5436. https://doi.org/10.1021/acsanm.1c00749

    Article  CAS  Google Scholar 

  22. Lee H, Hong S, Lee J et al (2016) Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl Mater Inter 8:15449. https://doi.org/10.1021/acsami.6b04364

    Article  CAS  Google Scholar 

  23. Bang J, Coskun S, Pyun K et al (2021) Advances in protective layer-coating on metal nanowires with enhanced stability and their applications. Appl Mater Today 22. https://doi.org/10.1016/j.apmt.2020.100909

  24. Bellew A, Manning H, da Rocha C et al (2015) Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS Nano 9:11422–11429. https://doi.org/10.1021/acsnano.5b05469

    Article  CAS  Google Scholar 

  25. De S, Higgins T, Lyons P et al (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3:1767–1774. https://doi.org/10.1021/nn900348c

    Article  CAS  Google Scholar 

  26. Langley D, Giusti G, Mayousse C et al (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24:452001. https://doi.org/10.1088/0957-4484/24/45/452001

    Article  CAS  Google Scholar 

  27. Jung J, Lee H, Ha I et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Inter 9:44609. https://doi.org/10.1021/acsami.7b14626

    Article  CAS  Google Scholar 

  28. Zhang N, Huang Y, Wang M et al (2019) Design and microwave absorption properties of thistle-like CoNi enveloped in dielectric Ag decorated graphene composites. J Colloid Interface Sci 534:110–121. https://doi.org/10.1016/j.jcis.2018.09.016

    Article  CAS  Google Scholar 

  29. Sun N, Guan Z, Liu Y et al (2019) Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv Energy Mater 9:1901351. https://doi.org/10.1002/aenm.201901351

    Article  CAS  Google Scholar 

  30. Wu Z, Tian K, Huang T et al (2018) Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl Mater Interfaces 10:11108–11115. https://doi.org/10.1021/acsami.7b17264

    Article  CAS  Google Scholar 

  31. Quan L, Qin F, Estevez D et al (2017) Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon 125:630–639. https://doi.org/10.1016/j.carbon.2017.09.101

    Article  CAS  Google Scholar 

  32. Wen B, Yang H, Lin Y et al (2021) Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption. J Colloid Interface Sci 586:208–218. https://doi.org/10.1016/j.jcis.2020.10.085

    Article  CAS  Google Scholar 

  33. Phromviyo N, Thongbai P, Ratchaphonsaenwong K et al (2019) Dielectric and electrical properties of nano-Ag/C3AH6 nanocomposites. Appl Surf Sci 483:294–301. https://doi.org/10.1016/j.apsusc.2019.03.293

    Article  CAS  Google Scholar 

  34. Sun H, Che R, You X et al (2014) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26:8120–8125. https://doi.org/10.1002/adma.201403735

    Article  CAS  Google Scholar 

  35. Naito Y, Suetake K (1971) Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Tech MT19:65. https://doi.org/10.1109/tmtt.1971.1127446

  36. Song W, Cao M, Fan L et al (2014) Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77:130–142. https://doi.org/10.1016/j.carbon.2014.05.014

    Article  CAS  Google Scholar 

  37. Qiang R, Du Y, Zhao H et al (2015) Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J Mater Chem A 3:13426–13434. https://doi.org/10.1039/c5ta01457c

    Article  CAS  Google Scholar 

  38. Yu Y, Wang M, Bai Y et al (2019) Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption. Chem Eng J 375. https://doi.org/10.1016/j.cej.2019.121914

  39. Cao M, Song W, Hou Z et al (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48:788–796. https://doi.org/10.1016/j.carbon.2009.10.028

    Article  CAS  Google Scholar 

  40. Tan R, Zhou J, Yao Z et al (2021) Ferrero Rocher (R) chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption. J Alloys Compd 857:157568. https://doi.org/10.1016/j.jallcom.2020.157568

    Article  CAS  Google Scholar 

  41. Chen F, Luo H, Cheng Y et al (2019) Fe/Fe3O4@N-doped carbon hexagonal plates decorated with Ag nanoparticles for microwave absorption. ACS Appl Nano Mater 2:7266–7278. https://doi.org/10.1021/acsanm.9b01755

    Article  CAS  Google Scholar 

  42. Liu P, Ng V, Yao Z et al (2017) Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl Mater Interfaces 9:16404–16416. https://doi.org/10.1021/acsami.7b02597

    Article  CAS  Google Scholar 

  43. Chen J, Jia H, Liu Z et al (2020) Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon 164:59–68. https://doi.org/10.1016/j.carbon.2020.03.049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr Junwang Fu (School of Petroleum Engineering, Xi′an Shiyou University, Xi′an 710065, China.) for experimental assistance. This research was supported by the National Natural Science Foundation of China (31800802), Fundamental Research Project of National Defense (2021-JCJQ-ZD-046-00) and Innovation Capability Support Fund of Shaanxi Province (S2021-0-ZC-XXXM-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhao, Y., Zhao, X. et al. Core–shell nanowires comprising silver@polypyrrole-derived pyrolytic carbon for high-efficiency microwave absorption. J Mater Sci 57, 20672–20684 (2022). https://doi.org/10.1007/s10853-022-07947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07947-6

Navigation