Skip to main content

Advertisement

Log in

Investigation on energy storage properties and thermally stable dielectric constant for high temperature electronic device applications in the holmium substituted Na0.5Bi0.5TiO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the recent time, technological advancements in high temperature devices lead to demand of dielectric ceramics with stable dielectric value at high temperature. Similarly, dielectric ceramics are being utilized in numerous energy storage applications. Herein, these properties were achieved through introduction of relaxor characteristics in the sodium bismuth titanate Na0.5Bi0.5TiO3 (NBT) by rare earth Ho3+ substitution (Na0.5 Bi0.5−xHoxTiO3, where x = 0.0, 0.5, 1, 2, and 3 mol%). Enhancement of relaxor properties were found with the substitution, which had been verified from the dielectric curve, polarization–electric field (P–E) loop and strain–electric field (S–E) curve. Observed diffuse phase transition type relaxor property in the dielectric curve was broadened with the holmium substitution. The plateau type of dielectric curve of 3 mol% Ho3+ substituted NBT results in excellent stability of dielectric constant over temperature range of 120 to 500 °C and 95 to 500 °C with 5% and 15% variation, respectively. The P–E loop changed from square to slim loop with holmium substitution. The slim polarization loop led to higher recoverable energy storage density (Wrec) of 0.46 J/cm2 at ≈ 108 kV/cm and 0.68 J/cm2 at ≈ 114 kV/cm electric field at room temperature for 2 and 3 mol% of Ho3+ substitution, respectively. In addition, 3 mol% Ho3+ substituted NBT exhibited stable Wrec of 0.68 J/cm3 from room temperature to 90 °C. Thus, 3 mol% Ho3+ substituted NBT can be a promising lead free ceramic for energy storage application and thermally stable dielectric capacitor for high temperature device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Jia, Y. Hou, M. Zheng, Y. Xu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing, IET Nanodielectrics 1, 3 (2018)

    Article  Google Scholar 

  2. M. Benyoussef, M. Zannen, J. Belhadi, B. Manoun, J.-L. Dellis, M. El Marssi, A. Lahmar, Ceram. Int. 44, 19451 (2018)

    Article  CAS  Google Scholar 

  3. A. Zeb, S.J. Milne, J. Mater. Sci. 26, 9243 (2015)

    CAS  Google Scholar 

  4. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  CAS  Google Scholar 

  5. L. Zhang, S. Jiang, B. Fan, G. Zhang, J. Alloy. Compd. 622, 162 (2015)

    Article  CAS  Google Scholar 

  6. K. Thangavelu, S. Asthana, Mater. Res. Express 2, 096301 (2015)

    Article  CAS  Google Scholar 

  7. F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, L. Liu, Ceram. Int. 43, 5564 (2017)

    Article  CAS  Google Scholar 

  8. K.R. Kandula, S.S.K. Raavi, S. Asthana, J. Alloy. Compd. 732, 233 (2018)

    Article  CAS  Google Scholar 

  9. J. Hao, Z. Xu, R. Chu, W. Li, D. Juan, F. Peng, Solid State Commun. 204, 19 (2015)

    Article  CAS  Google Scholar 

  10. R. Dittmer, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 034107 (2011)

    Article  CAS  Google Scholar 

  11. B. Malič, J. Koruza, J. Hreščak, J. Bernard, K. Wang, J. Fisher, A. Benčan, Materials 8, 8117 (2015)

    Article  CAS  Google Scholar 

  12. D.-Y. Lu, D.-X. Guan, Sci. Rep. 7, 6125 (2017)

    Article  CAS  Google Scholar 

  13. Rodrigues-Carvajal J 2000 FULLPROF-A Rietveld Refinement and Pattern Matching Analysis Program (France: Laboratoire Leon Brillouin, CEA-CNRS)

  14. B.N. Rao, R. Ranjan, Phys. Rev. B 86, 134103 (2012)

    Article  CAS  Google Scholar 

  15. S. Pattipaka, M. Peddigari, P. Dobbidi, Ceram. Int. 43, S151 (2017)

    Article  CAS  Google Scholar 

  16. B.N. Rao, A.N. Fitch, R. Ranjan, Phys. Rev. B 87, 060102 (2013)

    Article  Google Scholar 

  17. R. Roukos, N. Geoffroy, D. Chaumont, AIP Adv. 7, 015030 (2017)

    Article  CAS  Google Scholar 

  18. D.K. Khatua, T. Mehrotra, A. Mishra, B. Majumdar, A. Senyshyn, R. Ranjan, Acta Mater. 134, 177 (2017)

    Article  CAS  Google Scholar 

  19. R. Ranjan, A. Agrawal, A. Senyshyn, H. Boysen, J. Phys. 18, L515 (2006)

    CAS  Google Scholar 

  20. A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Ceram. Int. 44, 20178 (2018)

    Article  CAS  Google Scholar 

  21. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, J. Eur. Ceram. Soc. 39, 4778 (2019)

    Article  CAS  Google Scholar 

  22. P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 2257 (2012)

    Article  CAS  Google Scholar 

  23. D.K. Khatua, A. Agarwal, R. Ranjan, J. Appl. Phys. 123, 074102 (2018)

    Article  CAS  Google Scholar 

  24. J.S. Kim, C.H. Chung, H.S. Lee, S.T. Chung, J. Korean Phy. Soc. 58, 659 (2011)

    Article  CAS  Google Scholar 

  25. S.Y. Cho, E.-Y. Kim, S.Y. Kim, T.L. Pham, J.K. Han, D.S. Song, H.-K. Jung, J.-S. Lee, K.-S. An, J. Lim, S.D. Bu, Energies 13, 455 (2020)

    Article  CAS  Google Scholar 

  26. F. Li, J. Zhai, B. Shen, X. Liu, K. Yang, Y. Zhang, P. Li, B. Liu, H. Zeng, J. Appl. Phys. 121, 054103 (2017)

    Article  CAS  Google Scholar 

  27. V.V. Kirillov, V.A. Isupov, Ferroelectrics 5, 3 (1973)

    Article  CAS  Google Scholar 

  28. K. Banerjee, S.B. Alvi, A.K. Rengan, S. Asthana, J. Am. Ceram. Soc. 102, 6802 (2019)

    Article  CAS  Google Scholar 

  29. G. Cilaveni, K.V. Ashok Kumar, S.S.K. Raavi, Ch. Subrahmanyam, S. Asthana, J. Alloys Compd. 798, 540 (2019)

    Article  CAS  Google Scholar 

  30. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Sci. Rep. 7, 8726 (2017)

    Article  CAS  Google Scholar 

  31. Q. Xu, H. Liu, L. Zhang, J. Xie, H. Hao, M. Cao, Z. Yao, M.T. Lanagan, RSC Adv. 6, 59280 (2016)

    Article  CAS  Google Scholar 

  32. Q. Xu, M.T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, H. Liu, Ceram. Int. 42, 9728 (2016)

    Article  CAS  Google Scholar 

  33. M. Acosta, J. Zang, W. Jo, J. Rödel, J. Eur. Ceram. Soc. 32, 4327 (2012)

    Article  CAS  Google Scholar 

  34. C. Zhou, Q. Li, J. Xu, L. Yang, W. Zeng, C. Yuan, G. Chen, J Am Ceram Soc 101, 1554 (2018)

    Article  CAS  Google Scholar 

  35. H. Guo, X. Liu, F. Xue, L.-Q. Chen, W. Hong, X. Tan, Phys. Rev. B 93, 174114 (2016)

    Article  CAS  Google Scholar 

  36. J. Hao, W. Bai, W. Li, J. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012)

    Article  CAS  Google Scholar 

  37. W. Bai, D. Chen, P. Zheng, B. Shen, J. Zhai, Z. Ji, Dalton Trans. 45, 8573 (2016)

    Article  CAS  Google Scholar 

  38. H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. WonKim, K.-K. Ahn, J.-S. Lee, J. Appl. Phys. 113, 154102 (2013)

    Article  CAS  Google Scholar 

  39. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Nano Energy 58, 768 (2019)

    Article  CAS  Google Scholar 

  40. X. Hao, J. Adv. Dielect. 03, 1330001 (2013)

    Article  CAS  Google Scholar 

  41. M. Zannen, A. Lahmar, Z. Kutnjak, J. Belhadi, H. Khemakhem, M. El Marssi, Solid State Sci. 66, 31 (2017)

    Article  CAS  Google Scholar 

  42. M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574 (2015)

    Article  CAS  Google Scholar 

  43. M. Chandrasekhar, P. Kumar, Phase Transit. 89, 944 (2016)

    Article  CAS  Google Scholar 

  44. Q. Li, J. Wang, Y. Ma, L. Ma, G. Dong, H. Fan, J. Alloy. Compd. 663, 701 (2016)

    Article  CAS  Google Scholar 

  45. W. Cao, W. Li, T. Zhang, J. Sheng, Y. Hou, Y. Feng, Y. Yu, W. Fei, Energ. Technol. 3, 1198 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author SA acknowledges the UGC-DAE (CRS-M-250), CSIR-EMRII (Ref. No. 0194/NS), and DST India (CRG/2020/001509) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saket Asthana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Asthana, S. Investigation on energy storage properties and thermally stable dielectric constant for high temperature electronic device applications in the holmium substituted Na0.5Bi0.5TiO3. J Mater Sci: Mater Electron 32, 20225–20239 (2021). https://doi.org/10.1007/s10854-021-06526-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06526-w

Navigation