Skip to main content

Advertisement

Log in

Sm doped BNT–BZT lead-free ceramic for energy storage applications with broad temperature range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric ceramics with good temperature stability and excellent energy storage performances are in great demand for numerous electrical energy storage applications. In this work, xSm doped 0.5Bi0.51Na0.47TiO3–0.5BaZr0.45Ti0.55O3 (BNT–BZT − xSm, x = 0–0.04) relaxor ferroelectric lead-free ceramics were synthesized by high temperature solid-state sintering for energy storage applications. The grain sizes of BNT–BZT − xSm ceramics exhibited gradually decrease with the increase of Sm doping content, and the temperature stability of dielectric properties were improved due to the significantly reduced dielectric constant at depolarization temperature (Td). It’s worth noting that a good temperature stability with the variation of dielectric constant at − 50–200 °C (Δε) less than 15% was obtained in the BNT–BZT − 0.04Sm ceramic. A high recoverable energy storage density Wrec = 1.12 J/cm3 and high energy storage efficiency η = 89.6%, together with excellent temperature stability from 25 to 200 °C and fast charge–discharge t0.9 = 0.655 µs were achieved in BNT–BZT − 0.04Sm ceramic, demonstrating its potential application for future pulse electric device candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. L. Li, P. Fan, M. Wang, N. Takesue, D. Salamon, A. Vtyurin, Y. Zhang, H. Tan, B. Nan, Y. Lu, L. Liu, H. Zhang, Review of lead-free Bi-based dielectric ceramics for energy-storage applications. J. Phys. D Appl. Phys. 54, 293001 (2021)

    Article  CAS  Google Scholar 

  2. T. Correia, M. Mcmillen, M. Rokosz, P. Weaver, J. Gregg, G. Viola, M. Cain, G. Brennecka, A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 9, 2699–2702 (2013)

    Article  Google Scholar 

  3. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielect. 3, 1330001 (2013)

    Article  Google Scholar 

  4. A. Rohit, K. Devi, S. Rangnekar, An overview of energy storage and its importance in Indian renewable energy sector. J. Energy Storage 13, 10–23 (2017)

    Article  Google Scholar 

  5. Y. Wang, S. Chou, H. Liu, S. Dou, The electrochemical properties of high-capacity sulfur/reduced graphene oxide with different electrolyte systems. J. Power Sources 244, 240–245 (2013)

    Article  CAS  Google Scholar 

  6. I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)

    Article  CAS  Google Scholar 

  7. Y. Huang, Q. Guo, H. Hao, H. Liu, S. Zhang, Tailoring properties of (Bi0.51Na0.47)TiO3 based dielectrics for energy storage applications. J. Eur. Ceram. Soc. 39, 4752–4760 (2019)

    Article  CAS  Google Scholar 

  8. X. Jiang, H. Hao, S. Zhang, J. Lv, H. Liu, Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc. 39, 1103–1109 (2018)

    Article  Google Scholar 

  9. X. Hao, J. Zhai, B. Ling, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater. Sci. 63, 1–57 (2014)

    Article  CAS  Google Scholar 

  10. D. Li, X. Zeng, Z. Li, Z. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 10(4), 675–703 (2021)

    Article  CAS  Google Scholar 

  11. H. Wang, Y. Liu, T. Yang, S. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019)

    Article  Google Scholar 

  12. J. Wang, T. Yang, S. Chen, G. Li, High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics. Mater. Res. Bull. 48, 3847–3849 (2013)

    Article  CAS  Google Scholar 

  13. S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int. 39, 5571–5575 (2013)

    Article  CAS  Google Scholar 

  14. L. Zhao, Q. Liu, J. Gao, S. Zhang, J. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017)

    Article  Google Scholar 

  15. D. Li, Z. Shen, Z. Li, X. Wang, Y. Li, Effect of (Nb2/3Mg1/3)4+ complex on the dielectric and ferroelectric properties of (Ba0.3Sr0.7)0.35(Bi0.5Na0.5)0.65TiO3 ceramics for energy storage. J. Mater. Sci. 31, 3648–3653 (2020)

    CAS  Google Scholar 

  16. Q. Xu, T. Li, H. Hao, S.J. Zhang, Z.J. Wang, M.H. Cao, Z.H. Yao, H.X. Liu, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35, 545–553 (2015)

    Article  CAS  Google Scholar 

  17. L. Luo, B. Wang, X. Jiang, W. Li, Energy storage properties of (1−x)(Bi0.5Na0.5)TiO3–xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2014)

    Article  CAS  Google Scholar 

  18. D. Li, Z. Shen, Z. Li, W. Luo, X. Wang, Z. Wang, F. Song, Y. Li, P–E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J. Adv. Ceram. 9(2), 183–192 (2020)

    Article  CAS  Google Scholar 

  19. P. Chen, B. Chu, Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics. J. Eur. Ceram. Soc. 36, 81–88 (2016)

    Article  CAS  Google Scholar 

  20. Q. Xu, J. Xie, Z. He, L. Zhang, M. Cao, X. Huang, M. Lanagan, H. Hao, Z. Yao, H. Liu, Energy-storage properties of Bi0.5Na0.5TiO3–BaTiO3–KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 37, 99–106 (2017)

    Article  Google Scholar 

  21. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, G. Wang, Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05 K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94, 4382–4386 (2011)

    Article  CAS  Google Scholar 

  22. A. Mishra, B. Majumdar, R. Ranjan, A complex lead-free (Na, Bi, Ba)(Ti, Fe)O3 single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications. J. Eur. Ceram. Soc. 37, 2379–2384 (2017)

    Article  CAS  Google Scholar 

  23. Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J. Materiomics 5, 385–393 (2019)

    Article  Google Scholar 

  24. S. Kuang, X. Tang, L. Li, Y. Jiang, Q. Liu, Influence of Zr dopant on the dielectric properties and curie temperatures of Ba(ZrxTi1−x)O3 (0 ≤ x ≤ 0.12) ceramics. Scr. Mater. 61, 68–71 (2009)

    Article  CAS  Google Scholar 

  25. A. Deng, J. Wu, Effects of rare-earth dopants on phase structure and electrical properties of lead-free bismuth sodium titanate-based ceramics. J. Materiomics 6, 286–292 (2020)

    Article  Google Scholar 

  26. Y. Tsur, T.D. Dunbar, C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25–34 (2001)

    Article  CAS  Google Scholar 

  27. J. Xu, X. Lu, L. Yang, C. Zhou, Y. Zhao, H. Zhang, X. Zhang, W. Qiu, H. Wang, Enhanced electrical energy storage properties in La-doped (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics by addition of La2O3 and La(NO3)3. J. Mater. Sci. 52, 1–11 (2017)

    Article  Google Scholar 

  28. Z. Li, D. Li, Z. Shen, X. Zeng, F. Song, W. Luo, X. Wang, Z. Wang, Y. Li, Remarkably enhanced dielectric stability and energy storage properties in BNT–BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram. 11(2), 283–294 (2022)

    Article  CAS  Google Scholar 

  29. J. Li, F. Li, Z. Xu, S. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018)

    Article  Google Scholar 

  30. W. Li, D. Zhou, L. Pang, R. Xu, H. Guo, Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A 5, 19607–19612 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (Grant No. XHT2020-011), Major Program of the Natural Science Foundation of China (Grant No. 51790490), Natural Science Foundation of China (Grant No. 51872213) and Self-determined and Innovative Research Funds of SKLWUT (2021-PY-4).

Author information

Authors and Affiliations

Authors

Contributions

ZP performed the experiment; ZP performed the data analyses and wrote the manuscript; HH, DL, QG, ZY, MC, HL helped to perform the analysis with constructive discussions.

Corresponding author

Correspondence to Hua Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Hao, H., Li, D. et al. Sm doped BNT–BZT lead-free ceramic for energy storage applications with broad temperature range. J Mater Sci: Mater Electron 33, 14644–14654 (2022). https://doi.org/10.1007/s10854-022-08383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08383-7

Navigation