Skip to main content
Log in

Microstructure and electrical properties of xAl2O3-(1-x) LaCrO3 composite NTC ceramics prepared by microwave sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

xAl2O3-(1-x)LaCrO3 (x = 0.3, 0.4, 0.5, 0.7) composite negative temperature coefficient (NTC) ceramics were prepared by microwave sintering. The effects of different atmospheres and sintering temperatures on microstructure and electrical properties of the NTC ceramics were studied. X-ray diffraction results showed the ceramics were composed of a perovskite structure LaCrO3 and lanthanum hexaaluminate solid solution as well as a separate corundum phase. The existence of Cr3+ and Cr4+, which resulted in skip conduction, was confirmed by X-ray photoelectron spectroscopy. The resistance of the ceramics sintered in air was lower than that of ceramics sintered in an N2 atmosphere. Ceramics sintered in air and N2 showed NTC characteristics starting at 40 °C and 250 °C, respectively. The ρ50 and B300/700 values of the ceramics sintered in air were in the range of 5.06 × 105–2.21 × 109 Ω·cm and 4144–6828 K, respectively. The ceramics prepared at 1400 °C with a holding time of 5 min possessed excellent microstructure and electrical properties. Compared with conventional pressureless sintering, the sintering temperature and holding time of the microwave sintering process were decreased by 6.6–12.5% and 95.8–99.0%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. D. Houivet, J. Bernard, J.M. Haussonne, High temperature NTC ceramic resistors (ambient-1000°C). J. Eur. Cer. Soc. 24, 1237–1241 (2004). https://doi.org/10.1016/S0955-2219(03)00376-5

    Article  CAS  Google Scholar 

  2. A. Banerjee, S.A. Akbar, A new method for fabrication of stable and reproducible yttria-based thermistors. Sens. Actuators A 87, 60–66 (2000). https://doi.org/10.1016/S0924-4247(00)00466-0

    Article  CAS  Google Scholar 

  3. D. Katerinopoulou, P. Zalar, J. Sweelssen, G. Kiriakidis, C. Rentrop, P. Groen et al., Large-area all-printed temperature sensing surfaces using novel composite thermistor materials. Adv. Electron. Mater. 5, 1800605 (2019). https://doi.org/10.1002/aelm.201800605

    Article  CAS  Google Scholar 

  4. A. Feteira, K. Reichmann, NTC ceramics: past present and future. Adv. Sci. Technol. 67, 124–133 (2010)

    Article  CAS  Google Scholar 

  5. R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38, 5181–5188 (2012). https://doi.org/10.1016/j.ceramint.2012.03.024

    Article  CAS  Google Scholar 

  6. F. Guan, X.J. Lin, H. Dai et al., LaMn1-xTixO3-NiMn2O4(0 ≤ x ≤ 0.7): A composite NTC ceramic with controllable electrical property and high stability. J. Eur. Ceram. Soc. 39, 2692–2696 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.003

    Article  CAS  Google Scholar 

  7. K. Park, I.H. Han, Effect of partial substitution of Mg for Coin Mn1.4Ni1.2Co0.4O4 NTC thermistors on electrical stability. J. Electroceram. 17, 1079–1082 (2006). https://doi.org/10.1007/s10832-006-0465-1

    Article  CAS  Google Scholar 

  8. R.N. Jadhav, V. Puri, Influence of copper substitution on structural, electrical and dielectric properties of Ni(1–x)CuxMn2O4 (0≤x≤1) ceramics. J. Alloys Compd. 507, 151–156 (2010). https://doi.org/10.1016/j.jallcom.2010.07.143

    Article  CAS  Google Scholar 

  9. O. Shpotyuk, V. Balitska, I. Hadzaman et al., Sintering-modified mixed Ni-Co-Cu oxymanganospinels for NTC electroceramics. J. Alloys Compd. 509, 447–450 (2011). https://doi.org/10.1016/j.jallcom.2010.09.054

    Article  CAS  Google Scholar 

  10. K. Park, J.K. Lee, S.J. Kim et al., The effect of Zn on the microstructure and electrical properties of Mn1.17-xNi0.93Co0.9ZnxO4 (0 ≤ x ≤ 0.075) NTC thermistors. J. Alloys Compd. 467, 310–316 (2009). https://doi.org/10.1016/j.jallcom.2007.11.105

    Article  CAS  Google Scholar 

  11. T. Yang, Bo. Zhang et al., New high temperature NTC thermistors based on the Mg(Al1-xCrx)2O4 ceramics. J. Alloys Compd. 685, 287–293 (2016). https://doi.org/10.1016/j.jallcom.2016.05.301

    Article  CAS  Google Scholar 

  12. Q. Ma, Q. Zhao, X. Jia et al., Preparation and characterization for LaMnO3 and 0.3LaMnO3–0.7Y2O3 high temperature bilayer structure NTC thermistors. J Mater Sci-Mater El. 30, 11005–11010 (2019). https://doi.org/10.1007/s10854-019-01441-7

    Article  CAS  Google Scholar 

  13. H. Zhang, T. Liu, L. Zhao et al., Effect of Al2O3 addition on the microstructure and electrical properties of LaMnO3-based NTC thermistors. J. Mater. Sci. 28, 14195–14201 (2017). https://doi.org/10.1007/s10854-017-7276-9

    Article  CAS  Google Scholar 

  14. Jinseong Park, Micro structural and electrical properties of Y0.2Al0.1Mn0.27-xFe0.16Ni0.27-x(Cr2x)Oy for NTC thermistors. Ceram. Int. 41, 6386–6390 (2015). https://doi.org/10.1016/j.ceramint.2015.01.075

    Article  CAS  Google Scholar 

  15. F. Guan, Z.W. Dang, S.F. Huang et al., LaCr1-xFexO3 (0≤x≤0.7): A novel NTC ceramic with high stability. J. Eur. Ceram. Soc. 40, 5597–5601 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.05.081

    Article  CAS  Google Scholar 

  16. B. Zhang, Q. Zhao, A. Chang et al., Spark plasma sintering of MgAl2O4-YCr0.5Mn0.5O3 composite NTC ceramics. J. Eur. Ceram. Soc. 34, 2989–2995 (2012). https://doi.org/10.1016/j.jeurceramsoc.2014.03.025

    Article  CAS  Google Scholar 

  17. B. Zhang, Q. Zhao, A. Chang et al., MgAl2O4-LaCr0.5Mn0.5O3 composite ceramics for high temperature NTC thermistors. J Mater Sci-Mater El. 24, 4452–4456 (2013). https://doi.org/10.1007/s10854-013-1424-7

    Article  CAS  Google Scholar 

  18. A. Ga, X. Yin, Q. Zhao et al., A study based on MgAl2O4-LaCrO3 composite ceramics for high temperature NTC thermistors. J. Mater Sci.-Mater. El. 30, 11117–11122 (2019). https://doi.org/10.1007/s10854-019-01454-2

    Article  CAS  Google Scholar 

  19. Tian Yang, Bo. Zhang et al., New NTC thermistors based on LaCrO3-Mg(Al0.7Cr0.3)2O4 composite ceramics. J. Mater. Sci.-Mater. El. 28, 7558–7561 (2017). https://doi.org/10.1007/s10854-017-6445-1

    Article  CAS  Google Scholar 

  20. Y. Cheng, S. Sun, H. Hu, Preparation of Al2O3/TiC micro-composite ceramic tool materials by microwave sintering and their microstructure and properties. Ceram. Int. 40, 16761–16766 (2014). https://doi.org/10.1016/j.ceramint.2014.08.044

    Article  CAS  Google Scholar 

  21. D. Hong, Z. Yin, S. Yan et al., Fine grained Al2O3/SiC composite ceramic tool material prepared by two-step microwave sintering. Ceram. Int. 45, 11826–11832 (2019). https://doi.org/10.1016/j.ceramint.2019.03.061

    Article  CAS  Google Scholar 

  22. Z. Zhu, Z. Yin, D. Hong et al., Preparation of complex-shaped Al2O3/SiCp/SiCw ceramic tool by two-step microwave sintering. Ceram. Int. 46, 27362–27372 (2020). https://doi.org/10.1016/j.ceramint.2020.07.221

    Article  CAS  Google Scholar 

  23. C. Gindorf, L. Singheiser, K. Hilpert, Vaporisation of chromia in humid air. J Phys Chem Solids. 66, 384–387 (2005). https://doi.org/10.1016/j.jpcs.2004.06.092

    Article  CAS  Google Scholar 

  24. M. Mori, T. Yamamoto, T. Ichikawa et al., Dense sintered conditions and sintering mechanisms for alkaline earth metal (Mg, Ca and Sr)-doped LaCrO3 perovskites under reducing atmosphere. Solid State Ion. 148, 93–101 (2002). https://doi.org/10.1016/S0167-2738(02)00109-1

    Article  CAS  Google Scholar 

  25. A.N. Kamlo, J. Bernard, C. Lelievre et al., Synthesis and NTC properties of YCr1-xMnxO3 ceramics sintered under nitrogen atmosphere. J. Eur. Ceram. Soc. 31, 1457–1463 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.12.025

    Article  CAS  Google Scholar 

  26. A. Feteira, Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective. J. Am. Ceram. Soc. 92, 967–983 (2009). https://doi.org/10.1111/j.1551-2916.2009.02990.x

    Article  CAS  Google Scholar 

  27. Luo Ping, Bo. Zhang et al., Characterization and electrical conductivity of La1−xSrxCrO3 NTC ceramics. J. Mater. Sci.-Mater. El. 28, 9265–9271 (2017). https://doi.org/10.1007/s10854-017-6662-7

    Article  CAS  Google Scholar 

  28. O. Polat, M. Coskun, F.M. Coskun et al., Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3. J. Alloys Compd. 787, 1212–1224 (2019). https://doi.org/10.1016/j.jallcom.2019.02.141

    Article  CAS  Google Scholar 

  29. J.L. Ye, C.C. Wang, W. Ni et al., Dielectric properties of ErFeO3 ceramics over a broad temperature range. J. Alloys Compd. 617, 850–854 (2014). https://doi.org/10.1016/j.jallcom.2014.08.026

    Article  CAS  Google Scholar 

  30. B. Zhang, Q. Zhao, A. Chang et al., Spark Plasma Sintering of MgAl2O4-LaCr0.5Mn0.5O3 Composite Thermistor Ceramics and a Comparison Investigation with Conventional Sintering. J. Alloys Compd. 675, 381–386 (2016). https://doi.org/10.1016/j.jallcom.2016.03.139

    Article  CAS  Google Scholar 

  31. A. Banerjee, S.A. Akbar, A New Method for Fabrication of Stable and Reproducible Yttria-Based Thermistors. Sens. Actuators, A 87, 60–66 (2000). https://doi.org/10.1016/S0924-4247(00)00466-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (51875291), Excellent Youth Fund of Jiangsu Province (BK20190070), Jiangsu Provincial Six Talent Peaks Project (GDZB-016), and the Fundamental Research Funds for the Central Universities (30920032206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengbin Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Yin, Z., Hong, D. et al. Microstructure and electrical properties of xAl2O3-(1-x) LaCrO3 composite NTC ceramics prepared by microwave sintering. J Mater Sci: Mater Electron 32, 19412–19423 (2021). https://doi.org/10.1007/s10854-021-06458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06458-5

Navigation