Skip to main content

Advertisement

Log in

Molybdenum dioxide supported carbon nanotubes@carbon constructs disordered nanocluster particles as anodes for lithium-ion capacitors with long-term cycling stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As an emerging energy storage device, lithium-ion capacitors (LIC) can provide high-energy and power density and have received extensive attention from researchers. This paper proposes a new strategy for the synthesis of disordered CNT@C@MoO2 nanocluster particles by a two-step hydrothermal combined sintering method. Here, glucose is carbonized to form a carbon protective layer and Mo–O–C bonds are formed in the composite material, thereby suppressing the large volume expansion of MoO2 during the cycle. Moreover, the introduction of CNT@C and the presence of oxygen vacancies not only improve the conductivity of the entire electrode, but also the electrode–electrolyte contact area is accelerated, more active sites are provided, and the Li+ diffusion path is shortened. As a result, the designed multi-dimensional nanocluster carbon composite structure effectively improves the lithium storage performance of MoO2. The composite material still has a high specific capacity of 381 mAh g−1 after being cycled for 300 cycles at 0.1 A g−1, and a capacity of 148.4 mAh g−1 for 1000 cycles at 1.0 A g−1. At the same time, the calculation of cyclic voltammetry curve and capacitance contribution shows that the charge energy storage mechanism is the conversion reaction type dominated by diffusion. Then the constructed CNT@C@MoO2//AC LIC has high-energy (48.29 Wh kg−1) and power density (3600 W kg−1) and good cycling stability (82.26%@6000 cycles@1.0 A g-1). This research work opened up a new way for the design of carbon-coated metal oxide high-performance lithium-ion capacitor anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All of our authors ensure that all data and materials support their published statements and comply with on-site standards.

Code availability

All of our authors ensure that the software application or custom code supports their published claims and meets the field standards.

References

  1. G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Chem. Rev. 119, 11042–11109 (2019)

    Article  CAS  Google Scholar 

  2. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Nat. Rev. Mater. 5, 5–19 (2020)

    Article  Google Scholar 

  3. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Chem. Rev. 118, 9233–9280 (2018)

    Article  CAS  Google Scholar 

  4. Q. Gui, L. Wu, Y. Li, J. Liu, Adv. Sci. 6, 1802067 (2019)

    Article  CAS  Google Scholar 

  5. R. Shao, J. Niu, F. Zhu, M. Dou, Z. Zhang, F. Wang, Nano Energy 63, 103824 (2019)

    Article  CAS  Google Scholar 

  6. B. Deng, T. Lei, W. Zhu, L. Xiao, J. Liu, Adv. Funct. Mater. 28, 1704330 (2018)

    Article  CAS  Google Scholar 

  7. J. Niu, J. Liang, A. Gao, M. Dou, Z. Zhang, X. Lu, F. Wang, J. Mater. Chem. A 7, 21711–21721 (2019)

    Article  CAS  Google Scholar 

  8. M. Arnaiz, D. Shanmukaraj, D. Carriazo, D. Bhattacharjya, A. Villaverde, M. Armand, J. Ajuria, Energy Environ. Sci. 13, 2441–2449 (2020)

    Article  CAS  Google Scholar 

  9. Z.-A. Sahar, A.H.-A. Seyed, S.-N. Masoud, Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  10. Z.-A. Sahar, B. Mahin, S.-N. Masoud, Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  Google Scholar 

  11. Z.-A. Sahar, A.H.-A. Seyed, S.-N. Masoud, Ceram. Int. 47, 8959–8972 (2021)

    Article  CAS  Google Scholar 

  12. Z.-A. Sahar, M.-D. Sobhan, S.-N. Masoud, J. Mol. Liq. 231, 306–313 (2017)

    Article  CAS  Google Scholar 

  13. M. Saeed, Z.-A. Sahar, S.-N. Masoud, J. Mater. Sci.-Mater. Electron. 27, 834–842 (2016)

    Article  CAS  Google Scholar 

  14. J. Hao, J. Zhang, G. Xia, Y. Liu, Y. Zheng, W. Zhang, Y. Tang, W.K. Pang, Z. Guo, ACS Nano 12, 10430–10438 (2018)

    Article  CAS  Google Scholar 

  15. G. Mohammad, M.-K. Mehdi, Z.-A. Sahar, Ceram. Int. 46, 28894–28902 (2020)

    Article  CAS  Google Scholar 

  16. Z.-A. Sahar, S.M. Maryam, A. Omid, S.-N. Masoud, K.F. Loke, Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  17. Z.-A. Sahar, S. Zahra, A. Omid, S.-N. Masoud, Int. J. Hydrogen Energy 44, 20110–20120 (2019)

    Article  CAS  Google Scholar 

  18. Z.-A. Sahar, S. Zahra, A. Omid, S.-N. Masoud, J. Alloys Compd. 791, 792–799 (2019)

    Article  CAS  Google Scholar 

  19. M.-K. Mehdi, Z.-A. Sahar, G. Mohammad, J. Mater. Sci.-Mater. Electron. 31, 17332–17338 (2020)

    Article  CAS  Google Scholar 

  20. H.-J. Zhang, Y.-K. Wang, L.-B. Kong, Nanoscale 11, 7263–7276 (2019)

    Article  CAS  Google Scholar 

  21. H.-J. Zhang, Y.-K. Wang, L.-B. Kong, Appl. Surf. Sci. 531, 147222 (2020)

    Article  CAS  Google Scholar 

  22. A. Katrib, P. Leflaive, L. Hilaire, G. Maire, Catal. Lett. 38, 95–99 (1996)

    Article  CAS  Google Scholar 

  23. F. Gaspar, C.D. Nunes, Materials 10, 265 (2020)

    CAS  Google Scholar 

  24. Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.-S. Hu, K.R. Heier, L. Chen, R. Seshadri, G.D. Stucky, Nano Lett. 9, 4215–4220 (2009)

    Article  CAS  Google Scholar 

  25. B. Guo, X. Fang, B. Li, Y. Shi, C. Ouyang, Y.-S. Hu, Z. Wang, G.D. Stucky, L. Chen, Chem. Mater. 24, 457–463 (2012)

    Article  CAS  Google Scholar 

  26. L.C. Yang, Q.S. Gao, Y.H. Zhang, Y. Tang, Y.P. Wu, Electrochem. Commun. 10, 118–122 (2008)

    Article  CAS  Google Scholar 

  27. C. Zheng, W. Wu, Q. Deng, Y. Li, M. Wei, J. Colloid Interf. Sci. 592, 33–41 (2021)

    Article  CAS  Google Scholar 

  28. A. Bhaskar, M. Deepa, T.N. Rao, U.V. Varadaraju, J. Power Sour. 15, 169–178 (2012)

    Article  CAS  Google Scholar 

  29. X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Chem. Soc. Rev. 44, 2376–2404 (2015)

    Article  CAS  Google Scholar 

  30. Q. Gao, L. Yang, X. Lu, J. Mao, Y. Zhang, Y. Wu, Y. Tang, J. Mater. Chem. 20, 2807–2812 (2010)

    Article  CAS  Google Scholar 

  31. X. Wang, Y. Liu, J. Zeng, C. Peng, R. Wang, Ionics 25, 437–445 (2019)

    Article  CAS  Google Scholar 

  32. G.S. Zakharova, L. Singer, Z.A. Fattakhova, S. Wegener, E. Thauer, Q. Zhu, E.V. Shalaeva, R. Klingeler, J. Alloys Compd. 863, 158353 (2021)

    Article  CAS  Google Scholar 

  33. V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, J. Phys. Chem. B 109, 20207–20214 (2005)

    Article  CAS  Google Scholar 

  34. T. Zhang, L.-B. Kong, M.-C. Liu, Y.-H. Dai, K. Yan, B. Hu, Y.-C. Luo, L. Kang, Mater. Design 112, 88–96 (2016)

    Article  CAS  Google Scholar 

  35. J. Zhang, Y.-X. Yin, Y.-G. Guo, A.C.S. Appl, Mater. Interfaces 7, 27838–27844 (2015)

    Article  CAS  Google Scholar 

  36. Z.-A. Sahar, S.-N. Masoud, J. Ind. Eng. Chem. 20, 3313–3319 (2014)

    Article  CAS  Google Scholar 

  37. Z.-A. Sahar, S.-N. Masoud, J. Mater. Sci.-Mater. Electron. 26, 5812–5821 (2015)

    Article  CAS  Google Scholar 

  38. H. Sun, Y. Zhang, H. Liu, X. Zhang, J.-G. Wang, J. Alloys Compd. 787, 45–52 (2019)

    Article  CAS  Google Scholar 

  39. J.-Z. Wu, X.-Y. Li, Y.-R. Zhu, T.-F. Yi, J.-H. Zhang, Y. Xie, Ceram. Int. 42, 9250–9256 (2016)

    Article  CAS  Google Scholar 

  40. X. Zhang, J.-G. Wang, W. Hua, H. Liu, B. Wei, J. Alloys Compd. 787, 301–308 (2019)

    Article  CAS  Google Scholar 

  41. J. Meng, Q. Lin, T. Chen, X. Wei, J. Li, Z. Zhang, Nanoscale 10, 2908–2915 (2018)

    Article  CAS  Google Scholar 

  42. W. Zhang, J. Peng, W. Hua, Y. Liu, J. Wang, Y. Liang, W. Lai, Y. Jiang, Y. Huang, W. Zhang, H. Yang, Y. Yang, L. Li, Z. Liu, L. Wang, S.-L. Chou, Adv. Energy Mater. 11, 2100757 (2021)

  43. G. Xu, P. Liu, Y. Ren, X. Huang, Z. Peng, Y. Tang, H. Wang, J. Power Sour. 361, 1–8 (2017)

    Article  CAS  Google Scholar 

  44. J. Guan, L. Zhao, C. Xing, Y. Li, Mater. Res. Express 2, 095502 (2015)

    Article  CAS  Google Scholar 

  45. J.W. Kim, V. Augustyn, B. Dunn, Adv. Energy Mater. 2, 141–148 (2012)

    Article  CAS  Google Scholar 

  46. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  47. X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z.X. Shen, J. Tu, H.J. Fan, Small 12, 3048–3058 (2016)

    Article  CAS  Google Scholar 

  48. A. Bhaskar, M. Deepa, T.N. Rao, U.V. Varadaraju, J. Power Sour. 216, 169–178 (2012)

    Article  CAS  Google Scholar 

  49. A. Bhaskar, M. Deepa, T.N. Rao, A.C.S. Appl, Mater. Interfaces 5, 2555–2566 (2013)

    Article  CAS  Google Scholar 

  50. L. Yang, L. Liu, Y. Zhu, X. Wang, Y. Wu, J. Mater. Chem. 22, 13148–13152 (2012)

    Article  CAS  Google Scholar 

  51. Y. Xu, R. Yi, B. Yuan, X. Wu, M. Dunwell, Q. Lin, L. Fei, S. Deng, P. Andersen, D. Wang, H. Luo, J. Phys. Chem. Lett. 3, 309–314 (2012)

    Article  CAS  Google Scholar 

  52. X. Zhao, H.-E. Wang, J. Cao, W. Cai, J. Sui, Chem. Commun. 53, 10723–10726 (2017)

    Article  CAS  Google Scholar 

  53. B. Yang, J. Chen, L. Liu, P. Ma, B. Liu, J. Lang, Y. Tang, X. Yan, Energy Storage Mater. 23, 522–529 (2019)

    Article  Google Scholar 

  54. R. Bi, N. Xu, H. Ren, N. Yang, Y. Sun, A. Cao, R. Yu, D. Wang, Angew. Chem. Int. Ed. 59, 4865–4868 (2020)

    Article  CAS  Google Scholar 

  55. S. Li, T. Wang, Y. Huang, Z. Wei, G. Li, D.H.L. Ng, J. Lian, J. Qiu, Y. Zhao, X. Zhang, J. Ma, H. Li, A.C.S. Appl, Mater. Interfaces 11, 24114–24121 (2019)

    Article  CAS  Google Scholar 

  56. A. Chaturvedi, P. Hu, V. Aravindan, C. Kloc, S. Madhavi, J. Mater. Chem. A 5, 9177–9181 (2017)

    Article  CAS  Google Scholar 

  57. V. Aravindan, W. Chuiling, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, S. Madhavi, Phys. Chem. Chem. Phys. 14, 5808–5814 (2012)

    Article  CAS  Google Scholar 

  58. F. Chen, R. Li, M. Hou, L. Liu, R. Wang, Z. Deng, Electrochim. Acta 51, 61–65 (2005)

    Article  CAS  Google Scholar 

  59. Y. Liu, D. Zhang, Y. Shang, Y. Liu, J. Zhang, J. Electrochem. Soc. 162, A2123–A2130 (2015)

    Article  CAS  Google Scholar 

  60. V. Aravindan, M.V. Reddy, S. Madhavi, S.G. Mhaisalkar, G.V. Subba Rao, B.V.R. Chowdari, J. Power Sour. 196, 8850–8854 (2011)

    Article  CAS  Google Scholar 

  61. L. Gao, D. Huang, Y. Shen, M. Wang, J. Mater. Chem. A 3, 23570–23576 (2015)

    Article  CAS  Google Scholar 

  62. Q. Wang, Z.H. Wen, J.H. Li, Adv. Funct. Mater. 16, 2141–2146 (2006)

    Article  CAS  Google Scholar 

  63. Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, Adv. Mater. 23, 791–795 (2011)

    Article  CAS  Google Scholar 

  64. J. Wang, H. Li, L. Shen, S. Dong, X. Zhang, RSC Adv. 6, 71338–71344 (2016)

    Article  CAS  Google Scholar 

  65. S. Yuvaraj, K. Karthikeyan, D. Kalpana, Y.S. Lee, R.K. Selvan, J. Colloid Interface Sci. 469, 47–56 (2016)

    Article  CAS  Google Scholar 

  66. L. Shen, H. Lv, S. Chen, P. Kopold, P.V. Aken, X. Wu, J. Maier, Y. Yu, Adv. Mater. 29, 1700142 (2017)

    Article  CAS  Google Scholar 

  67. P. Wang, G. Zhang, M.Y. Lid, Y.X. Yin, J.Y. Li, G. Li, W.P. Wang, W. Peng, F.F. Cao, Y.G. Guo, Chem. Eng. J. 375, 122020 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51971104, 51762031).

Funding

This work was supported by the National Natural Science Foundation of China (No. 51971104, 51762031).

Author information

Authors and Affiliations

Authors

Contributions

HJZ: Investigation, Conceptualization, Data curation, Methodology, Software, Writing-original draft, Writing-review & editing. QCJ: Validation, Project administration. LBK: Conceptualization, Methodology, Resources, Supervision, Funding acquisition.

Corresponding author

Correspondence to Ling-Bin Kong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

The manuscript is approved by all authors, and we assure that this article described is an original work, and has not been published previously. This work also is not under consideration for publication elsewhere, and its publication is approved by all authors and tacitly/explicitly by the responsible authorities where the work was carried out. If our paper is accepted, it will not be published elsewhere in the same form, in English or in any other language.

Consent to participate

All our authors agree to submit the manuscript to Journal of Materials Science: Materials in Electronics.

Consent for publication

All our authors agree to publish this manuscript to Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HJ., Jia, QC. & Kong, LB. Molybdenum dioxide supported carbon nanotubes@carbon constructs disordered nanocluster particles as anodes for lithium-ion capacitors with long-term cycling stability. J Mater Sci: Mater Electron 32, 18912–18930 (2021). https://doi.org/10.1007/s10854-021-06408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06408-1

Navigation