Skip to main content

Advertisement

Log in

High-performance nickel sulfide modified electrode material from single-source precursor for energy storage application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance energy storage electrode materials are emerging demand in near future for the construction of supercapacitor with high energy and power densities. Herein, Nickel (II) Diethyldithiocarbamate was used as single-source precursor for Nickel Sulfide (Ni9S8) two-dimensional (2D) nanosheets (NSs) preparation and hexadecylamine as shape directing agent via simple solvothermal method. The orthorhombic structure of Ni9S8 NSs was confirmed by X-ray diffraction (XRD) pattern. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that as-prepared Ni9S8 nanoparticles possess sheet-like morphology. Besides, the thermal stability of Ni(DTC)2 complex was studied by Thermogravimetric/Derivative Thermogravimetric (TG/DTG) with differential scanning calorimetric (DSC) analysis. The electrochemical properties of Ni9S8 NSs was studied using galvanostatic charge–discharge (GCD) and cyclic voltammetry (CV) techniques. From the charge–discharge study of Ni9S8 NSs, a high specific capacitance of 281 Fg−1 was obtained at a current density of 1 Ag−1 and up to 82% retentivity was achieved after 5000 cycles. Thus, the prepared Ni9S8 NSs could be the one of the attractive potential active electrode materials for the application of supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.A. Ajibade, N.L. Botha, Synthesis and structural studies of copper sulfide nanocrystals. Results Phys. 6, 581–589 (2016). https://doi.org/10.1016/j.rinp.2016.08.001

    Article  Google Scholar 

  2. N. Khaorapapong, A. Ontam, M. Ogawa, Very slow formation of copper sulfide and cobalt sulfide nanoparticles in montmorillonite. Appl. Clay Sci. 51, 182–186 (2011). https://doi.org/10.1016/j.clay.2010.10.030

    Article  CAS  Google Scholar 

  3. P. Devendran, T. Alagesan, N. Nallamuthu, S. Asath Bahadur, K. Pandian, Single-precursor synthesis of sub-10 nm CdS nanoparticles embedded on graphene sheets nanocatalyst for active photodegradation under visible light. Appl. Surf. Sci. 534, 147614 (2020). https://doi.org/10.1016/j.apsusc.2020.147614

    Article  CAS  Google Scholar 

  4. K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012

    Article  Google Scholar 

  5. M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahir, N. Mahmood, Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16, 5290–5300 (2014). https://doi.org/10.1039/C4CE00090K

    Article  CAS  Google Scholar 

  6. A. Sarkar, A.K. Chakraborty, S. Bera, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells. 182, 314–320 (2018). https://doi.org/10.1016/j.solmat.2018.03.026

    Article  CAS  Google Scholar 

  7. P. Devendran, T. Alagesan, A. Manikandan, S. Asath Bahadur, M. Krishna Kumar, S. Rathinavel, K. Pandian, Sonochemical synthesis of Bi2S3 nanowires using single source precursor and their electrochemical activity. Nanosci. Nanotechnol. Lett. 8, 478–483 (2016). https://doi.org/10.1166/nnl.2016.2111

    Article  Google Scholar 

  8. K. Jeyabanu, K. Sundaramahalingam, P. Devendran, A. Manikandan, N. Nallamuthu, Effect of electrical conductivity studies for CuS nanofillers mixed magnesium ion based PVA-PVP blend polymer solid electrolyte. Phys. B 572, 129–138 (2019). https://doi.org/10.1016/j.physb.2019.07.049

    Article  CAS  Google Scholar 

  9. A. Shameem, P. Devendran, V. Siva, R. Packiaraj, N. Nallamuthu, S. Asath Bahadur, Electrochemical performance and optimization of α-NiMoO4 by different facile synthetic approach for supercapacitor application. J. Mater. Sci. Mater. Electron. 30, 3305–3315 (2019). https://doi.org/10.1007/s10854-018-00603-3

    Article  CAS  Google Scholar 

  10. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149

    Article  CAS  Google Scholar 

  11. Q. Xu, Y. Liu, R. Su, L. Cai, B. Li, Y. Zhang, L. Zhang, Y. Wang, Y. Wang, N. Li, X. Gong, Z. Gu, Y. Chen, Y. Tan, C. Dong, T.S. Sreeprasad, Highly fluorescent Zn-doped carbon dots as fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration. Nanoscale 8, 17919–17927 (2016). https://doi.org/10.1039/C6NR05434J

    Article  CAS  Google Scholar 

  12. Y. Jiang, Y.J. Zhu, G.F. Cheng, Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid. Cryst. Growth Des. 6, 2174–2176 (2006). https://doi.org/10.1021/cg060219a

    Article  CAS  Google Scholar 

  13. J. Cui, L. Wang, X. Yu, A simple and generalized heat-up method for the synthesis of metal sulfide nanocrystals. New J. Chem. 43, 16007–16011 (2019). https://doi.org/10.1039/C9NJ02644D

    Article  CAS  Google Scholar 

  14. T.W. Chen, U. Rajaji, S.M. Chen, M. Govindasamy, S.S. Paul Selvin, S. Manavalan, R. Arumugam, Sonochemical synthesis of graphene oxide sheets supported Cu2S nanodots for high sensitive electrochemical determination of caffeic acid in red wine and soft drinks. Compos. Part B Eng. 158, 419–427 (2019). https://doi.org/10.1016/j.compositesb.2018.09.099

    Article  CAS  Google Scholar 

  15. P. Devendran, T. Alagesan, K. Pandian, Single pot microwave synthesis of CdS nanoparticles in ionic liquid and their photocatalytic application. Asian J. Chem. 25, S79 (2013)

    Article  CAS  Google Scholar 

  16. P. Hu, Y. Cao, B. Lu, Flowerlike assemblies of Bi2S3 nanorods by solvothermal route and their electrochemical hydrogen storage performance. Mater. Lett. 106, 297–300 (2013). https://doi.org/10.1016/j.matlet.2013.05.049

    Article  CAS  Google Scholar 

  17. P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces. 9, 2500–2508 (2017). https://doi.org/10.1021/acsami.6b13984

    Article  CAS  Google Scholar 

  18. H.C. Tao, X.L. Yang, L.L. Zhang, S.B. Ni, One-step synthesis of nickel sulfide/N-doped graphene composite as anode materials for lithium ion batteries. J. Electroanal. Chem. 739, 36–42 (2015). https://doi.org/10.1016/j.jelechem.2014.10.035

    Article  CAS  Google Scholar 

  19. U.M. Patil, P.K. Katkar, S.J. Marje, C.D. Lokhande, S.C. Jun, Hydrous nickel sulphide nanoparticle decorated 3D graphene foam electrodes for enhanced supercapacitive performance of an asymmetric device. New J. Chem. 42, 20123–20130 (2018). https://doi.org/10.1039/C8NJ04228D

    Article  CAS  Google Scholar 

  20. P. Gaikar, S.P. Pawar, R.S. Mane, M. Nuashad, D.V. Shinde, Synthesis of nickel sulfide as a promising electrode material for pseudocapacitor application. RSC Adv. 6, 112589–112593 (2016). https://doi.org/10.1039/C6RA22606J

    Article  CAS  Google Scholar 

  21. S. Nandhini, A. Juliet Christina Mary, G. Muralidharan, Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl. Surf. Sci. 449, 485–491 (2018). https://doi.org/10.1016/j.apsusc.2018.01.024

    Article  CAS  Google Scholar 

  22. B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang, C. Cheng, Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 308, 1165–1173 (2017). https://doi.org/10.1016/j.cej.2016.10.016

    Article  CAS  Google Scholar 

  23. E. Sathiyaraj, S. Thirumaran, S. Ciattini, S. Selvanayagam, Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: new single source precursors for nickel sulfide and nickel–iron sulfide nanoparticles. Inorgan. Chim. Acta. 498, 119162 (2019). https://doi.org/10.1016/j.ica.2019.119162

    Article  CAS  Google Scholar 

  24. P. Devendran, T. Alagesan, T.R. Ravindran, K. Pandian, Synthesis of spherical CdS quantum dots using cadmium diethyldithiocarbamate as single source precursor in olive oil medium. Curr. Nanosci. 10, 302–307 (2014). https://doi.org/10.2174/15734137113096660117

    Article  CAS  Google Scholar 

  25. K. Nguyen, N.D. Hoa, C.M. Hung, D.T. Le Thanh, N. Van Duy, N. Van Hieu, comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Adv. 8, 19449–19455 (2018). https://doi.org/10.1039/C8RA02862A

    Article  CAS  Google Scholar 

  26. E. Sathiyaraj, S. Thirumaran, Structural, morphological and optical properties of iron sulfide, cobalt sulfide, copper sulfide, zinc sulfide and copper–iron sulfide nanoparticles synthesized from single source precursors. Chem. Phys. Lett. 739, 136972 (2020). https://doi.org/10.1016/j.cplett.2019.136972

    Article  CAS  Google Scholar 

  27. R. Karthikeyan, D. Thangaraju, N. Prakash, Y. Hayakawa, Single-step synthesis and catalytic activity of structure-controlled nickel sulfide nanoparticles. CrystEngComm 17, 5431–5439 (2015). https://doi.org/10.1039/c5ce00742a

    Article  CAS  Google Scholar 

  28. P. Devendran, T. Alagesan, K. Pandian, Synthesis and characterization of Bi2S3 nanorods decorated on carbon sphere and study its electrochemical application. Adv. Mater. Res. 938, 215–220 (2014). https://doi.org/10.4028/scientific.net/AMR.938.215

    Article  Google Scholar 

  29. F. Ansari, A. Sobhani, M. Salavati-Niasari, Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J. Magn. Magn. Mater. 410, 27–33 (2016). https://doi.org/10.1016/j.jmmm.2016.03.014

    Article  CAS  Google Scholar 

  30. S. Pan, J. Zhu, X. Liu, Preparation, electrochemical properties, and adsorption kinetics of Ni3S2/graphene nanocomposites using alkyldithiocarbonatio complexes of nickel(ii) as single-source precursors. New J. Chem. 37, 654–662 (2013). https://doi.org/10.1039/C2NJ40854F

    Article  CAS  Google Scholar 

  31. H.S. Mahdi, A. Parveen, A. Azam, Structural and photoluminescence properties of Ni doped CdS nanoparticles synthesis by sol gel method. AIP Conf. Proc. 1953, 30031 (2018). https://doi.org/10.1063/1.5032366

    Article  CAS  Google Scholar 

  32. G.S. Lotey, S. Guleria, Crystallographic, magnetic and optical analysis of Ni-doped CdS dilute magnetic semiconducting nanoparticles. J. Mater. Sci. Mater. Electron. 26, 7715–7718 (2015). https://doi.org/10.1007/s10854-015-3413-5

    Article  CAS  Google Scholar 

  33. Y. Fazli, S. Mahdi Pourmortazavi, I. Kohsari, M. Sadeghpur, Electrochemical synthesis and structure characterization of nickel sulfide nanoparticles. Mater. Sci. Semicond. Process. 27, 362–367 (2014). https://doi.org/10.1016/j.mssp.2014.07.013

    Article  CAS  Google Scholar 

  34. A. Sobhani, M. Salavati-Niasari, Synthesis, characterization, optical and magnetic properties of a nickel sulfide series by three different methods. Superlattices Microstruct. 59, 1–12 (2013). https://doi.org/10.1016/j.spmi.2013.03.018

    Article  CAS  Google Scholar 

  35. T. Mthethwa, V.S.R.R. Pullabhotla, P.S. Mdluli, J. Wesley-Smith, N. Revaprasadu, Synthesis of hexadecylamine capped CdS nanoparticles using heterocyclic cadmium dithiocarbamates as single source precursors. Polyhedron 28, 2977–2982 (2009). https://doi.org/10.1016/j.poly.2009.07.019

    Article  CAS  Google Scholar 

  36. J. Xu, L. Wang, J. Zhang, J. Qian, J. Liu, Z. Zhang, H. Zhang, X. Liu, Fabrication of porous double-urchin-like MgCo2O4 hierarchical architectures for high-rate supercapacitors. J. Alloys Compd. 688, 933–938 (2016). https://doi.org/10.1016/j.jallcom.2016.07.250

    Article  CAS  Google Scholar 

  37. T.F. Hung, Z.W. Yin, S.B. Betzler, W. Zheng, J. Yang, H. Zheng, Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019). https://doi.org/10.1016/j.cej.2019.02.136

    Article  CAS  Google Scholar 

  38. A. Singh, A.J. Roberts, R.C.T. Slade, A. Chandra, High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J. Mater. Chem. A 2, 16723–16730 (2014). https://doi.org/10.1039/C4TA02870H

    Article  CAS  Google Scholar 

  39. B. Li, Y. Hu, J. Li, M. Liu, L. Kong, Y. Hu, L. Kang, Mechanical alloying synthesis of Co9S8 particles as materials for supercapacitors. Metals (Basel). 6, 142 (2016). https://doi.org/10.3390/met6060142

    Article  Google Scholar 

  40. A.K. Noordeen, S. Sambasivam, S. Chinnasamy, J. Ramasamy, T. Subramani, Hierarchical flower structured Bi2S3/reduced graphene oxide nanocomposite for high electrochemical performance. J. Inorg. Organomet. Polym. Mater. 28, 73–83 (2018). https://doi.org/10.1007/s10904-017-0701-y

    Article  CAS  Google Scholar 

  41. K. Liang, C. Wang, X. Xu, J. Leng, H. Ma, Capacitive and photocatalytic performance of Bi2S3 nanostructures synthesized by solvothermal method. Phys. Lett. A 381, 652–657 (2017). https://doi.org/10.1016/j.physleta.2016.12.005

    Article  CAS  Google Scholar 

  42. N. Nair, B.R. Sankapal, Cationic-exchange approach for conversion of two dimensional CdS to two dimensional Ag2S nanowires with an intermediate core–shell nanostructure towards supercapacitor application. New J. Chem. 40, 10144–10152 (2016). https://doi.org/10.1039/C6NJ02411D

    Article  CAS  Google Scholar 

  43. F. Yu, V.T. Tiong, L. Pang, R. Zhou, X. Wang, E.R. Waclawik, K. Ostrikov, H. Wang, Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chin Chem Lett. 30, 1115–1120 (2019). https://doi.org/10.1016/j.cclet.2019.01.004

    Article  CAS  Google Scholar 

  44. K. Krishnamoorthy, P. Pazhamalai, S.J. Kim, Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim. Acta 227, 85–94 (2017). https://doi.org/10.1016/j.electacta.2016.12.171

    Article  CAS  Google Scholar 

  45. M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power Sources 285, 63–69 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author C.S and P.D shows gratitude to IRC, Kalasalingam Academy of Research and Education (KARE) for providing research facilities and owe thankful for funding under the University Research Fellowship (URF) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Devendran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambathkumar, C., Ranjithkumar, R., Arasi, S.E. et al. High-performance nickel sulfide modified electrode material from single-source precursor for energy storage application. J Mater Sci: Mater Electron 32, 20058–20070 (2021). https://doi.org/10.1007/s10854-021-06383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06383-7

Navigation