Skip to main content
Log in

Direct growth and size tuning of InAs/GaAs quantum dots on transferable silicon nanomembranes for solar cells application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper we show for the first time the possibility to direct grow and tune the size and optical properties of high quality InAs/GaAs quantum dots on transferable crystalline silicon nanomembranes. The transferable silicon nanomembranes have been grown via in-situ H2 prebake of porous silicon in Ultra High Vacuum Chemical vapour Deposition (UHV-CVD) reactor. Flat and continuous transferable crystalline nanomembranes with thicknesses below 30 nm have been obtained. The mechanical strain in the silicon nanomembranes has been tuned via sintering temperature between 900 and 1100 °C for the direct crystalline growth of transferable InAs/GaAs (QDs)/Si foils. The size and band gap energy of these InAs/GaAs quantum dots are tuned via strain engineering in silicon nanomembranes. Several advanced techniques such as Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) spectroscopy are used to investigate the structural and optical properties of transferable silicon nanomembranes and the grown InAs/GaAs QDs. High quality InAs/GaAs QDs with tuned sizes grown on flat and continuous transferable crystalline nanomembranes have been obtained. The obtained results have shown that this novel process allows the growth of well separated InAs/GaAs QDs with well defined shape, high density around 2 × 1010/cm2 and a well controlled size variation as function of the substrate strain between 2 and 10 nm. The high quality of the structural and optical properties of the InAs/GaAs QDs monolithically grown on a transferable Si nanomembranes and its compatibility with standard Si solar cells technologies offer a great opportunity for growing a cheap and high performance InAs/GaAs quantum dots/Si third generation solar cells and microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Alova, Nat. Energy 5, 920–927 (2020)

    Article  Google Scholar 

  2. J.A. Luceño-Sánchez, A.M. Díez-Pascual, R.P. Capilla, Int. J. Mol. Sci. 20, 976 (2019)

    Article  Google Scholar 

  3. D.W. Cyrs, H.J. Avens, Z.A. Capshaw, A.R. Kingsbury, J. Sahmel, B.E. Tvermoes, Energy Policy 68, 524–533 (2014)

    Article  CAS  Google Scholar 

  4. A. Babayigit, D. Duy Thanh, A. Ethirajan, J. Manca, M. Muller, H.-G. Boyen, B. Conings, Sci. Rep. 6(1), 18721 (2016)

    Article  CAS  Google Scholar 

  5. M. Choi, F.P. García de Arquer, A.H. Proppe et al., Nat. Commun. 11, 103 (2020)

    Article  CAS  Google Scholar 

  6. I. Berbezier, M. Aouassa, A. Ronda, L. Favre, M. Bollani, R. Sordan, A. Delobbe, P. Sudraud, J. Appl. Phys. 113(6), 064908 (2013)

    Article  Google Scholar 

  7. M. Aouassa, L. Favre, A. Ronda, H. Maaref, I. Berbezier, N. J. Phys. 14(6), 063038 (2012)

    Article  Google Scholar 

  8. P.K. Nayak, S. Mahesh, H.J. Snaith et al., Nat. Rev. Mater. 4, 269–285 (2019)

    Article  CAS  Google Scholar 

  9. M.A. Basit, M.A. Abbas, H.M. Naeem, I. Ali, E. Jang, J.H. Bang, T. Joo Park, Mater. Res. Bull. 127, 110858 (2020)

    Article  CAS  Google Scholar 

  10. H. Fu, V. Ramalingam, H. Kim, C. Lin, X. Fang, H.N. Alshareef, H. He Jr., Adv. Energy Mater. 9(22), 1900180 (2019)

    Article  Google Scholar 

  11. E.S. Jung, M.A. Basit, M.A. Abbas, I. Ali, D.W. Kim, Y.M. Park, T.J. Park, Sol. Energy Mater. Sol. Cells 218, 110753 (2020)

    Article  CAS  Google Scholar 

  12. W. Yang, K. Hu, F. Teng, J. Weng, Y. Zhang, X. Fang, Nano Lett. 18(8), 4697–4703 (2018). https://doi.org/10.1021/acs.nanolett.8b00988

    Article  CAS  Google Scholar 

  13. W. Yang, J. Chen, Y. Zhang, Y. Zhang, J.-H. He, X. Fang, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201808182

    Article  Google Scholar 

  14. S.-Y. Lin, Y.-J. Tsai, S.-C. Lee, Jpn. J. Appl. Phys. 40, L1290–L1292 (2010)

    Article  Google Scholar 

  15. J. Gan, J. He, R.L.Z. Hoye, A. Mavlonov, F. Raziq, J.L. MacManus-Driscoll, X. Wu, S. Li, X. Zu, Y. Zhan, X. Zhang, L. Qiao, ACS Energy Lett. 4(6), 1308–1320 (2019)

    Article  CAS  Google Scholar 

  16. F. Li, S. Zhou, J. Yuan, C. Qin, Y. Yang, J. Shi, X. Ling, Y. Li, W. Ma, ACS Energy Lett. 4(11), 2571 (2019)

    Article  CAS  Google Scholar 

  17. A.P. Litvin, I.D. Skurlov, I.G. Korzhenevskii, A. Dubavik, S.A. Cherevkov, A.V. Sokolova, P.S. Parfenov, D.A. Onishchuk, V.V. Zakharov, E.V. Ushakova, X. Zhang, A.V. Fedorov, A.V. Baranov, J. Phys. Chem. C 123(3), 3115–3121 (2019)

    Article  CAS  Google Scholar 

  18. N.S. Beattie, P. See, G. Zoppi, P. Ushasree, M. Duchamp, I. Farrer, D.A. Ritchie, S. Tomic, ACS Photonics 4(11), 2745–2750 (2017)

    Article  CAS  Google Scholar 

  19. A. Creti, V. Tasco, G. Montagna, I. Tarantini, A. Salhi, A. Passaseo, M. Lomascolo, ACS Appl. Nano Mater. 3(8), 8365–8371 (2020)

    Article  CAS  Google Scholar 

  20. I. Berbezier, J.N. Aqua, M. Aouassa, L. Favre, S. Escoubas, A. Gouyé, Phys. Rev. B 90(3), 035315 (2014)

    Article  CAS  Google Scholar 

  21. M. Aouassa, S. Escoubas, A. Ronda, L. Favre, S. Gouder, R. Mahamdi, Appl. Phys. Lett. 101(23), 233105 (2012)

    Article  Google Scholar 

  22. M. Aouassa, I. Jadli, L.S. Hassayoun, H. Maaref, G. Panczer, L. Favre, Superlattices Microstruct. 112, 493–498 (2017)

    Article  CAS  Google Scholar 

  23. A. Lukianov, K. Murakami, C. Takazawa, M. Ihara, Appl. Phys. Lett. 108, 213904 (2016)

    Article  Google Scholar 

  24. C. Chiang, B.T. Lee, Sci. Rep. 9, 12631 (2019)

    Article  Google Scholar 

  25. C.A. Mercado-Ornelas, I.E. Cortes-Mestizob, E. Eugenio-López, L.I. Espinosa-Vega, D. García-Compean, I. Lara-Velázquez, AYu. Gorbatchev, L. Zamora-Peredo, C.M. Yee-Rendonf, V.H. Méndez-Garcia, Physica E 124, 114217 (2020)

    Article  CAS  Google Scholar 

  26. M. Karim, R. Martini, H.S. Radhakrishnan, K. van Nieuwenhuysen, V. Depauw, W. Ramadan, I. Gordon, J. Poortmans, Nanoscale Res. Lett. 9(1), 348 (2014)

    Article  Google Scholar 

  27. V. Labunov, V. Bondarenko, L. Glinenko, A. Dorofeev, L. Tabulina, Thin Solid Films 137, 123–134 (1986)

    Article  CAS  Google Scholar 

  28. A.M. Raya, M. Friedl, S. Martí-Sánchez, V.G. Dubrovskii, L. Francaviglia, B. Alén, N. Morgan, G. Tütüncüoglu, Q.M. Ramasse, D. Fuster, J.M. Llorens, J. Arbiol, A.F. Morral, Nanoscale 12, 815 (2020)

    Article  CAS  Google Scholar 

  29. B. Shi, L. Wang, A.A. Taylor, S.S. Brunelli, H. Zhao, B. Song, J. Klamkin, Appl. Phys. Lett. 114, 172102 (2019)

    Article  Google Scholar 

  30. J. Zhang, W. Jie, T. Wang, D. Zeng, B. Yang, J. Cryst. Growth 306, 33 (2007)

    Article  CAS  Google Scholar 

  31. Y. Wan, Q. Li, Y. Geng, B. Shi, K.M. Lau, Appl. Phys. Lett. 107, 081106 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through Research Grant No. DSR2020-02-446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Aouassa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouassa, M., Franzò, G., M’Ghaieth, R. et al. Direct growth and size tuning of InAs/GaAs quantum dots on transferable silicon nanomembranes for solar cells application. J Mater Sci: Mater Electron 32, 18251–18263 (2021). https://doi.org/10.1007/s10854-021-06368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06368-6

Navigation