Skip to main content
Log in

Impact of composite last quantum barrier on the performance of AlGaN-based deep ultraviolet light-emitting diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The AlGaN-based deep ultraviolet light-emitting diodes (DUV-LEDs) with a newly developed composite last quantum barrier (CLQB) were studied extensively. The CLQB was composed of a conventional undoped last quantum barrier (u-LQB) and an extra Mg-doped last quantum barrier (p-LQB). It was demonstrated that the light output power of the DUV-LED could be improved significantly by inserting the p-LQB to form the CLQB with carefully optimized Mg-doping level. In fact, the light output power of the AlGaN-based DUV-LED with the optimized CLQB increased by approximately 30% as compared with the DUV-LEDs fabricated without the insertion of the p-LQB at an injection current of 40 mA. Furthermore, it was revealed that the increase in light output power could be ascribed to the introduction of the CLQB, which attenuated the electrical current leakage and increased the hole injection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Aggerstam, S. Lourdudoss, H.H. Radamson, M. Sjödin, P. Lorenzini, D.C. Look, Thin Solid Films 515, 705–707 (2006)

    Article  CAS  Google Scholar 

  2. T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita, E. Yagyu, Y. Tokuda, IEEE Trans. Electron Devices 60, 1046–1053 (2013)

    Article  CAS  Google Scholar 

  3. A. Khan, K. Balakrishnan, T. Katona, Nat. Photonics 2, 77–84 (2008)

    Article  CAS  Google Scholar 

  4. W. Sun, M. Shatalov, J. Deng, X. Hu, J. Yang, A. Lunev, Y. Bilenko, M. Shur, R. Gaska, Appl. Phys. Lett. 96, 061102 (2010)

    Article  Google Scholar 

  5. M.S. Shur, R. Gaska, IEEE Trans. Electron Devices 57, 12–25 (2010)

    Article  CAS  Google Scholar 

  6. H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra, IEEE Trans. Electron Devices 57, 88–100 (2010)

    Article  CAS  Google Scholar 

  7. T. Paskova, Physica Status Solidi (B) 245(6), 1011–1025 (2008)

    Article  CAS  Google Scholar 

  8. W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, J. Ye, Adv. Funct. Mater. 28, 1802395 (2018)

    Article  Google Scholar 

  9. H. Sun, M.K. Shakfa, M.M. Muhammed, B. Janjua, K.-H. Li, R. Lin, T.K. Ng, I.S. Roqan, B.S. Ooi, X. Li, ACS Photonics 5, 964–970 (2017)

    Article  Google Scholar 

  10. H. Sun, D. Priante, J.-W. Min, R.C. Subedi, M.K. Shakfa, Z. Ren, K.-H. Li, R. Lin, C. Zhao, T.K. Ng, J.-H. Ryou, X. Zhang, B.S. Ooi, X. Li, ACS Photonics 5, 3305–3314 (2018)

    Article  CAS  Google Scholar 

  11. Z. Zhuang, D. Iida, K. Ohkawa, Opt. Express 28, 30423 (2020)

    Article  CAS  Google Scholar 

  12. H. Long, J. Dai, Y. Zhang, S. Wang, B. Tan, S. Zhang, L. Xu, M. Shan, Z.C. Feng, C. Chen, H.. Kuo, Appl. Phys. Lett. 114, 042101 (2019)

    Article  Google Scholar 

  13. Z. Chen, J. Hoo, Y. Chen, V. Wang, S. Guo, Jpn. J. Appl. Phys. 58, SC1007 (2019)

    Article  CAS  Google Scholar 

  14. Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, F. Yun, Photonics Res. 8, 806 (2020)

    Article  CAS  Google Scholar 

  15. Q. Chen, J. Dai, X. Li, Y. Gao, H. Long, Z.-H. Zhang, C. Chen, H.-C. Kuo, IEEE Electron Device Lett. 40, 1925–1928 (2019)

    Article  CAS  Google Scholar 

  16. H. Hu, B. Tang, H. Wan, H. Sun, S. Zhou, J. Dai, C. Chen, S. Liu, L.J. Guo, Nano Energy 69, 104427 (2020)

    Article  CAS  Google Scholar 

  17. H. Sun, S. Mitra, R.C. Subedi, Y. Zhang, W. Guo, J. Ye, M.K. Shakfa, T.K. Ng, B.S. Ooi, I.S. Roqan, Z. Zhang, J. Dai, C. Chen, S. Long, Adv. Funct. Mater. 29, 1905445 (2019)

    Article  CAS  Google Scholar 

  18. Z.H. Zhang, S.W.H. Chen, Y.H. Zhang, L.P. Li, S.W. Wang, K.K. Tian, C.S. Chu, M.Q. Fang, H.C. Kuo, W.G. Bi, ACS Photonics 4, 1846–1850 (2017)

    Article  CAS  Google Scholar 

  19. C. Liu, B. Melanson, J. Zhang, Photonics Res. 7, 87 (2020)

    Article  CAS  Google Scholar 

  20. Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, H. Sun, J. Phys. D Appl. Phys. 53, 073002 (2020)

    Article  CAS  Google Scholar 

  21. G.-D. Hao, M. Taniguchi, S.-I. Inoue, J. Phys. D Appl. Phys. 53, 505107 (2020)

    Article  Google Scholar 

  22. Z. Liu, H. Yu, Z. Ren, J. Dai, C. Chen, H. Sun, Semicond. Sci. Technol. 35, 075021 (2020)

    Article  CAS  Google Scholar 

  23. Z.H. Zhang, S.W. Huang Chen, C. Chu, K. Tian, M. Fang, Y. Zhang, W. Bi, H.C. Kuo, Nanoscale Res. Lett. 13, 122 (2018)

    Article  Google Scholar 

  24. Y.-H. Shih, J.-Y. Chang, J.-K. Sheu, Y.-K. Kuo, F.-M. Chen, M.-L. Lee, W.-C. Lai, IEEE Trans. Electron Devices 63, 1141–1147 (2016)

    Article  CAS  Google Scholar 

  25. L. He, W. Zhao, K. Zhang, C. He, H. Wu, X. Liu, X. Luo, S. Li, Z. Chen, Appl. Phys. Express 12, 062013 (2019)

    Article  CAS  Google Scholar 

  26. J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, M.A. Khan, Appl. Phys. Lett. 83, 3456–3458 (2003)

    Article  CAS  Google Scholar 

  27. M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J.P. Zhang, V. Adivarahan, S. Wu, G. Simin, M.A. Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M.S. Shur, R. Gaska, Appl. Phys. Lett. 82, 167–169 (2003)

    Article  CAS  Google Scholar 

  28. M.L. Nakarmi, N. Nepal, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 94, 091903 (2009)

    Article  Google Scholar 

  29. N. Nepal, K.B. Nam, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, J.M. Zavada, R.G. Wilson, Appl. Phys. Lett. 84, 1090–1092 (2004)

    Article  CAS  Google Scholar 

  30. K.B. Nam, M.L. Nakarmi, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 83, 878–880 (2003)

    Article  CAS  Google Scholar 

  31. C.-L. Tsai, H.-H. Liu, J.-W. Chen, C.-P. Lu, K. Ikenaga, T. Tabuchi, K. Matsumoto, Y.-K. Fu, Solid-State Electron. 138, 84–88 (2017)

    Article  CAS  Google Scholar 

  32. Y.-K. Kuo, M.-C. Tsai, S.-H. Yen, T.-C. Hsu, Y.-J. Shen, IEEE J. Quantum Electron. 46, 1214–1220 (2010)

    Article  CAS  Google Scholar 

  33. Z. Jun, T. Wu, W. Feng, Y. Weiyi, X. Hui, D. Jiangnan, F. Yanyan, W. Zhihao, C. Changqing, IEEE Photonics J. 5, 1600310–1600310 (2013)

    Article  Google Scholar 

  34. X. Zhang, H. Sun, J. Huang, T. Liu, X. Wang, Y. Zhang, S. Li, S. Zhang, Y. Hou, Z. Guo, J. Electron. Mater. 48, 460–466 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62005026), Natural Science Foundation of Jiangsu Province (Grant No. BK20191027), National Natural Science Foundation of China (Grant No. 61804027), and Natural Science Foundation of Jiangsu Province (Grant No. BK20180359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zhang, X., Wang, S. et al. Impact of composite last quantum barrier on the performance of AlGaN-based deep ultraviolet light-emitting diode. J Mater Sci: Mater Electron 32, 18138–18144 (2021). https://doi.org/10.1007/s10854-021-06357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06357-9

Navigation