Skip to main content
Log in

Dielectric properties of bismuth layer structured ferroelectric Bi3R2Ti3FeO15 (R = Bi, Gd, and Nd) at microwave and radiofrequency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 02 July 2021

This article has been updated

Abstract

Bismuth layer structured ferroelectric Bi3R2Ti3FeO15 with R = Bi (BFTO), Gd (BGFTO), and Nd (BNFTO) composition were synthesized by solid-state route, and their morphology and dielectric properties were investigated. The BGFTO and BNFTO samples, show a decrease in dielectric characteristics compared to BFTO. This can be explained by structural distortion resulting from the replacement of lanthanides in the cations of A-site in the perovskite layer. Impedance spectroscopy was performed to establish a correlation between the electrical properties and the microstructure of the ceramics. A non-Debye relaxation induced by a thermally activated mechanism can be observed in all samples. The activation energy of the materials found in the range of 0.6–0.9 eV and indicates the association of doubly ionized oxygen vacancy. The three phases proved to be news candidates for X4D capacitors, with excellent temperature stability (29–150 °C, TCC ≤  ± 3.3%). In addition, the electroceramics were used to design a cylindrical dielectric resonator antenna (CDRA) for microwave applications. The Bi3R2Ti3FeO15-based CDRA showed great potential for microwave antenna application operating in the S-band. A change is observed to τf of BFTO phase (− 428.48 ppm °C−1) to BGFTO (+ 59.17 ppm °C−1) and BNFTO (+ 57.69 ppm °C−1). This result opens up a great opportunity for future work in CDRA with near-zero temperature coefficients (τf ∼ 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. S.K. Badge, A.V. Deshpande, Study of dielectric and ferroelectric properties of Bismuth Titanate (Bi4Ti3O12) ceramic prepared by sol–gel synthesis and solid-state reaction method with varying sintering temperature. Solid State Ion. 334, 21–28 (2019). https://doi.org/10.1016/j.ssi.2019.01.028

    Article  CAS  Google Scholar 

  2. Y. Shi, Y. Pu, J. Li, R. Shi, W. Wang, Q. Zhang, L. Guo, Structure, dielectric and multiferroic properties of three-layered Aurivillius SrBi3Nb2FeO12 ceramics. Ceram. Int. 45(7), 9283–9287 (2019). https://doi.org/10.1016/j.ceramint.2019.01.129

    Article  CAS  Google Scholar 

  3. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Structural and electrical characteristics of Bi2YZrVO9 ceramic. Mater. Res. Bull. 124, 110745 (2020). https://doi.org/10.1016/j.materresbull.2019.110745

    Article  CAS  Google Scholar 

  4. S. Sun, Y. Li, X. Yin, C. Liu, X. Li, R. Ti, L. Fang, T. Zhang, R. Peng, Y. Lu, The nanoscale control of disorder-to-order layer-stacking boosts multiferroic responses in an Aurivillius-type layered oxide. J. Mater. Chem. C 9(14), 4825–4837 (2021). https://doi.org/10.1039/D1TC00309G

    Article  CAS  Google Scholar 

  5. S. Sun, W. Wang, J. Chen, Z. Xiao, N. Cheng, Z. Zhao, Y. Tian, X. Yin, Substrate- and layer-effects on structural and photovoltaic properties of spin-coated Aurivillius-type Bim+1Fem-3Ti3O3m+3 thin films. J. Alloys Compd. 851, 156833 (2021). https://doi.org/10.1016/j.jallcom.2020.156833

    Article  CAS  Google Scholar 

  6. S. Sun, X. Yin, Engineered layer-stacked interfaces inside Aurivillius-type layered oxides enables superior ferroelectric property. Curr. Comput. Aided Drug Des. 10(8), 710 (2020). https://doi.org/10.3390/cryst10080710

    Article  CAS  Google Scholar 

  7. V. Koval, I. Skorvanek, G. Viola, M. Zhang, C. Jia, H. Yan, Crystal chemistry and magnetic properties of Gd-substituted Aurivillius-type Bi5FeTi3O15 ceramics. J. Phys. Chem. C 122(27), 15733–15743 (2018). https://doi.org/10.1021/acs.jpcc.8b03801

    Article  CAS  Google Scholar 

  8. W.C. Ferreira, G.L.C. Rodrigues, B.S. Araujo, F.A.A. de Aguiar, A.N.A. de Abreu Silva, P.B.A. Fechine, C.W.A. Paschoal, A.P. Ayala, Pressure-induced structural phase transitions in the multiferroic four-layer Aurivillius ceramic Bi5FeTi3O15. Ceram. Int. 46(11), 18056–18062 (2020). https://doi.org/10.1016/j.ceramint.2020.04.122

    Article  CAS  Google Scholar 

  9. P.H.T. Silva, M.A.S. Silva, R.B. da Silva, M.A. Correa, F. Bohn, A.S. de Menezes, W.C. Ferreira, A.P. Ayala, A.S.B. Sombra, P.B.A. Fechine, Effects of the Bi3+ substitution on the structural, vibrational, and magnetic properties of bismuth layer-structured ferroelectrics. Appl. Phys. A 126(8), 1–12 (2020). https://doi.org/10.1007/s00339-020-03858-y

    Article  CAS  Google Scholar 

  10. Y. Bai, J. Chen, R. Tian, S. Zhao, Enhanced multiferroic and magnetoelectric properties of Ho, Mn co-doped Bi5Ti3FeO15 films. Mater. Lett. 164, 618–622 (2016). https://doi.org/10.1016/j.matlet.2015.11.083

    Article  CAS  Google Scholar 

  11. X. Liu, L. Xu, Y. Huang, C. Qin, L. Qin, H.J. Seo, Improved photochemical properties of Aurivillius Bi5Ti3FeO15 with partial substitution of Ti4+ with Fe3+. Ceram. Int. 43(15), 12372–12380 (2017). https://doi.org/10.1016/j.ceramint.2017.06.103

    Article  CAS  Google Scholar 

  12. J. Wu, H. Zhang, N. Meng, V. Koval, A. Mahajan, Z. Gao, D. Zhang, H. Yan, Perovskite Bi0.5Na0.5TiO3-based materials for dielectric capacitors with ultrahigh thermal stability. Mater. Des. 198, 109344 (2021). https://doi.org/10.1016/j.matdes.2020.109344

    Article  CAS  Google Scholar 

  13. K. Miao, X. Wang, D. Hu, Y. Wang, J. Xiao, Fabrication of Y and Fe co-doped BaZr0.13Ti1.46O3 fine-grained ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int. 43(12), 9099–9104 (2017). https://doi.org/10.1016/j.ceramint.2017.04.056

    Article  CAS  Google Scholar 

  14. D. Han, C. Wang, D. Lu, F. Hussain, D. Wang, F. Meng, A temperature stable (Ba1–xCex)(Ti1–x/2Mgx/2)O3 lead-free ceramic for X4D capacitors. J. Alloys Compd. 821, 153480 (2020). https://doi.org/10.1016/j.jallcom.2019.153480

    Article  CAS  Google Scholar 

  15. F.A.A. Aguiar, A.J.M. Sales, B.S. Araújo, K.D.A. Sabóia, M.C. Campos Filho, A.S.B. Sombra, A.P. Ayala, P.B.A. Fechine, Effect of V2O5 addition on the phase composition of Bi5FeTi3O15 ceramic and RF/microwave dielectric properties. J. Electron. Mater. 46, 2467–2475 (2017). https://doi.org/10.1007/s11664-017-5312-4

    Article  CAS  Google Scholar 

  16. P.M.O. Silva, T.S.M. Fernandes, R.M.G. Oliveira, M.A.S. Silva, A.S.B. Sombra, Radiofrequency and microwave properties study of the electroceramic BaBi4Ti4O15. Mater. Sci. Eng. B 182, 37–44 (2014). https://doi.org/10.1016/j.mseb.2013.11.017

    Article  CAS  Google Scholar 

  17. R.G.M. Oliveira, R.A. Silva, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, J.C. Goes, H.D. de Andrade, I.S. Queiroz Júnior, C. Singh, A.S.B. Sombra, Effects of CaTiO3 addition on the microwave dielectric properties and antenna properties of BiVO4 ceramics. Compos. B 175, 107122 (2019). https://doi.org/10.1016/j.compositesb.2019.107122

    Article  CAS  Google Scholar 

  18. C.A. Rodrigues Junior, M.C. Campos Filho, D.G. Sousa, A.J.M. Sales, R.P.S. Leão, A.S.B. Sombra, G.C. Barroso, Structural and electrical properties of the SrBi4Ti4O15: V2O5 matrix in the microwave frequency range. J. Electromagn. Waves Appl. 32(11), 1329–1341 (2018). https://doi.org/10.1080/09205071.2018.1436004

    Article  Google Scholar 

  19. S. Parida, A. Satapathy, E. Sinha, A. Bisen, S.K. Rout, Effect of neodymium on optical bandgap and microwave dielectric properties of barium zirconate ceramic. Metall. Mater. Trans. A 46(3), 1277–1286 (2015). https://doi.org/10.1007/s11661-014-2725-z

    Article  CAS  Google Scholar 

  20. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  21. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960). https://doi.org/10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  22. M.A.S. Silva, T.S.M. Fernandes, A.S.B. Sombra, An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τf). J. Appl. Phys. 112, 74106 (2012). https://doi.org/10.1063/1.4755799

    Article  CAS  Google Scholar 

  23. J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S. Trolier-McKinstry, Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82(4), 921–926 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01854.x

    Article  CAS  Google Scholar 

  24. S. Behara, L. Ghatti, S. Kanthamani, M. Dumpala, T. Thomas, Structural, optical, and Raman studies of Gd doped sodium bismuth titanate. Ceram. Int. 44, 12118–12124 (2018). https://doi.org/10.1016/j.ceramint.2018.03.233

    Article  CAS  Google Scholar 

  25. J.D. Bobić, R.M. Katiliute, M. Ivanov, M.M. Vijatović Petrović, N.I. Ilić, A.S. Džunuzović, J. Banys, B.D. Stojanović, Dielectric, ferroelectric and magnetic properties of La doped Bi5Ti3FeO15 ceramics. J. Mater. Sci. Mater. Electron. 27, 2448–2454 (2016). https://doi.org/10.1007/s10854-015-4044-6

    Article  CAS  Google Scholar 

  26. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Structural and electrical characteristics of rare-earth modified bismuth layer structured compounds. J. Alloys Compd. 863, 158457 (2021). https://doi.org/10.1016/j.jallcom.2020.158457

    Article  CAS  Google Scholar 

  27. J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy, in Impedance Spectroscopy, 3rd edn., ed. by E. Barsoukov, J.R. Macdonald (Wiley, Wiley-interscience, New Jersey, 2018), p. 6. https://doi.org/10.1002/9781119381860.ch1

    Chapter  Google Scholar 

  28. G.B. Yu, L.G. Wang, C.M. Zhu, F.Z. Lv, F.C. Liu, W.J. Kong, Y.T. Zhao, P.Y. Zeng, Z.H. Huang, Relaxor dielectric properties of lead-free Bi4Ti3O12/Bi4.5Na0.5Ti4O15 intergrowth ceramics. Ceram. Int. 46(7), 9474–9484 (2020). https://doi.org/10.1016/j.ceramint.2019.12.208

    Article  CAS  Google Scholar 

  29. D.V.M. Paiva, M.A.S. Silva, T.S. Ribeiro, I.F. Vasconcelos, A.S.B. Sombra, J.C. Goes, P.B.A. Fechine, Novel magnetic-dielectric composite ceramic obtained from Y3Fe5O12 and CaTiO3. J. Alloys Compd. 644, 763–769 (2015). https://doi.org/10.1016/j.jallcom.2015.05.053

    Article  CAS  Google Scholar 

  30. M. Zhang, Z. Chen, Y. Yue, T. Chen, Z. Yan, Q. Jiang, B. Yang, M. Eriksson, J. Tang, D. Zhang, Z. Shen, I. Abrahams, H. Yan, Terahertz reading of ferroelectric domain wall dielectric switching. ACS Appl. Mater. Interfaces 13(10), 12622–12628 (2021). https://doi.org/10.1021/acsami.1c00523

    Article  CAS  Google Scholar 

  31. S. Mantri, J. Daniels, Domain walls in ferroelectrics. J. Am. Ceram. Soc. 104(4), 1619–1632 (2021). https://doi.org/10.1111/jace.17555

    Article  CAS  Google Scholar 

  32. D. Prajapat, A. Sagdeo, V. Raghavendra Reddy, Structural, magnetic and dielectric properties of vanadium substituted four layered Aurivillius Bi5FeTi3O15 ceramics. Ceram. Int. 45(15), 19093–19097 (2019). https://doi.org/10.1016/j.ceramint.2019.06.154

    Article  CAS  Google Scholar 

  33. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D 32, R57–R70 (1999). https://doi.org/10.1088/0022-3727/32/14/201

    Article  CAS  Google Scholar 

  34. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 1–8 (2005). https://doi.org/10.1063/1.1870099

    Article  CAS  Google Scholar 

  35. A. Mohapatra, P.R. Das, R.N.P. Choudhary, Structural and electrical properties of Bi5Ti3FeO15 ceramics. J. Mater. Sci. Mater. Electron. 25, 1348–1353 (2014). https://doi.org/10.1007/s10854-014-1733-5

    Article  CAS  Google Scholar 

  36. M. Badole, S. Dwivedi, T. Pareek, S.A. Ahmed, S. Kumar, Significantly improved dielectric and piezoelectric properties of BiAlO3 modified potassium bismuth titanate lead-free ceramics. Mater. Sci. Eng. B 262, 114749 (2020). https://doi.org/10.1016/j.mseb.2020.114749

    Article  CAS  Google Scholar 

  37. C. Ji, T. Fan, G. Chen, X. Bai, J. Wang, J. He, W. Cai, R. Gao, X. Deng, Z. Wang, X. Lei, C. Fu, Influence of sintering method on microstructure, electrical and magnetic properties of BiFeO3–BaTiO3 solid solution ceramics. Mater. Today Chem. 20, 100419 (2021). https://doi.org/10.1016/j.mtchem.2020.100419

    Article  CAS  Google Scholar 

  38. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Impedance and modulus spectroscopy characterization of lead-free barium titanate ferroelectric ceramics. Ceram. Int. 41(6), 7713–7722 (2015). https://doi.org/10.1016/j.ceramint.2015.02.102

    Article  CAS  Google Scholar 

  39. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  40. D.K. Kushvaha, B. Tiwari, S.K. Rout, Enhancement of electrical energy storage ability by controlling grain size of polycrystalline BaNb2O6 for high density capacitor application. J. Alloys Compd. 829, 154573 (2020). https://doi.org/10.1016/j.jallcom.2020.154573

    Article  CAS  Google Scholar 

  41. B.C. Sutar, R.N.P. Choudhary, P.R. Das, Dielectric and impedance spectroscopy of Sr(Bi0.5Nb0.5)O3 ceramics. Ceram. Int. 40, 7791–7798 (2014). https://doi.org/10.1016/j.ceramint.2013.12.122

    Article  CAS  Google Scholar 

  42. A. Maaroufi, O. Oabi, B. Lucas, Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites. Phys. B 492, 31–38 (2016). https://doi.org/10.1016/j.physb.2016.03.035

    Article  CAS  Google Scholar 

  43. A.S. Bondarenko, G.A. Ragoisha, in Progress in Chemometrics Research, ed. by A.L. Pomerantsev (Nova Science Publishers, New York, 2005), pp. 89–102 (the program is available online at http://www.abc.chemistry.bsu.by/vi/analyser/). Accessed 20 Feb 2021.

  44. S. Thakur, R. Rai, I. Bdikin, S.P. Rai, Dielectric relaxation and ac conduction in multiferroic Bi0.8Gd0.1Pb0.1Fe0.9Ti0.1O3 ceramics: impedance spectroscopy analysis. Phase Transit. 89, 1213–1224 (2016). https://doi.org/10.1080/01411594.2016.1160399

    Article  CAS  Google Scholar 

  45. N. Okasha, S.I. El-Dek, M. Ayman, A.I. Ali, Comparative study on the influence of rare earth ions doping in Bi0.6Sr0.4FeO3 nanomultiferroics. J. Alloys Compd. 689, 1051–1058 (2016). https://doi.org/10.1016/j.jallcom.2016.08.077

    Article  CAS  Google Scholar 

  46. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, Effects of Nd3+ and high-valence Nb5+ co-doping on the structural, dielectric and magnetic properties of BiFeO3 multiferroics. Ceram. Int. 44, 7683–7693 (2018). https://doi.org/10.1016/j.ceramint.2018.01.194

    Article  CAS  Google Scholar 

  47. B. Pandit, B.R. Sankapal, P.M. Koinkar, Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device. Sci. Rep. 9, 5892 (2019). https://doi.org/10.1038/s41598-019-42301-y

    Article  CAS  Google Scholar 

  48. M. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26, 44–50 (2010). https://doi.org/10.1109/MEI.2010.5482787

    Article  CAS  Google Scholar 

  49. H. Ohsato, M. Mizuta, T. Okuda, S. Nishigaki, Crystal structure and microwave dielectric properties of tungsten bronze type Ba6–3xR8+2xTi18O54 (R = La,Pr, Nd, and Sm) solid solutions, in Proc. XVII Conf. App. Crystallogr., (World Scientific Publishers, Singapore, 1998) pp. 440–447.

  50. S.K. Badge, A.V. Deshpande, La3+ modified bismuth titanate (BLT) prepared by sol–gel synthesis: structural, dielectric, impedance, and ferroelectric studies. Solid State Ion. 347, 115270 (2020). https://doi.org/10.1016/j.ssi.2020.115270

    Article  CAS  Google Scholar 

  51. K. Fukuda, R.K. Awai, Microwave characteristics of TiO2-Bi2O3 dielectric resonator. Jpn. J. Appl. Phys. 32, 4584 (1993). https://doi.org/10.1143/JJAP.32.4584

    Article  CAS  Google Scholar 

  52. M.R. Islam, M.T. Islam, M. Moniruzzaman et al., Penta band single negative meta-atom absorber designed on square enclosed star-shaped modified split ring resonator for S-, C-, X- and Ku-bands microwave applications. Sci Rep 11, 8784 (2021). https://doi.org/10.1038/s41598-021-87958-6

    Article  CAS  Google Scholar 

  53. Z. Wang, Y. Chen, Structures and microwave dielectric properties of Ti-doped CeO2 ceramics with a near-zero temperature coefficient of resonant frequency. J. Alloys Compd. 854, 157270 (2021). https://doi.org/10.1016/j.jallcom.2020.157270

    Article  CAS  Google Scholar 

  54. Y. Ji, K. Song, S. Zhang, Z. Lu, G. Wang, L. Li, D. Zhou, D. Wang, I.M. Reaney, Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna. J. Eur. Ceram. Soc. 41, 424–429 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.08.053

    Article  CAS  Google Scholar 

  55. J. Wang, X. Lu, Y. Li, L. Wang, H. Zhu, Z. Fu, F. Yan, X. Wang, Q. Zhang, Correlations between microwave dielectric properties and crystal structures of Sb-doped Co0.5Ti0.5NbO4 ceramics. Ceram. Int. 46(3), 3464–3470 (2020). https://doi.org/10.1016/j.ceramint.2019.10.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the following Brazilian agencies for scientific and technological development: CNPq (408790/2016-4), CAPES (Finance Code 001, PROEX 23038.000509/2020-82) and Funcap (PNE-0112-00048.01.00/16). Moreover, the authors also acknowledge the Central Analítica-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos for providing equipment and technical support for the experiments involving SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. A. Fechine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P.H.T., Silva, M.A.S., Sombra, A.S.B. et al. Dielectric properties of bismuth layer structured ferroelectric Bi3R2Ti3FeO15 (R = Bi, Gd, and Nd) at microwave and radiofrequency. J Mater Sci: Mater Electron 32, 18628–18643 (2021). https://doi.org/10.1007/s10854-021-06332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06332-4

Navigation