Skip to main content
Log in

High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high driving electric field and the large strain hysteresis are subject to a challenge for piezoelectric actuators’ practical applications. In order to obtain the piezoceramics with giant strain and low hysteresis at small electric field, a ternary solid solution (0.97-x)(K0.48Na0.52)Nb0.965Sb0.035–0.03Bi0.5(K0.18Na0.82)0.5ZrO3-xBaZrO3 (x = 0–0.06) was designed and synthesized by the traditional solid-state reaction method. The relationships among phase transition, microstructure, and electrical properties of the ceramics samples were systemically investigated. Under a low electric field of 4 kV/mm, the ceramic with x = 0.02 obtained a high bipolar strain of 0.29% (Smax/Emax = 729 pm/V) and a low hysteresis of 13.8%. The excellent piezoelectric properties are mainly attributed to rhombohedral–orthorhombic–tetragonal (R–O–T) phase boundary and the relaxor-to-ferroelectric phase transition. We believe that our research can not only provide the pathway of achieving KNN-based ceramics with high strain and low hysteresis but also promote the practical application of lead-free piezoelectric actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71–93 (2012)

    Article  CAS  Google Scholar 

  2. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  3. J. Hao, W. Li, J. Zhai, H. Chen, Mat. Sci. Eng. R. 135, 1–57 (2019)

    Article  Google Scholar 

  4. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rodel, Appl. Phys. Lett. 91, 3 (2007)

    Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  6. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  7. P. Li, J.W. Zhai, B. Shen, S.J. Zhang, X.L. Li, F.Y. Zhu, X.M. Zhang, Adv. Mater. 30, 9 (2018)

    CAS  Google Scholar 

  8. Q. Liu, Y.C. Zhang, J. Gao, Z. Zhou, H. Wang, K. Wang, X.W. Zhang, L.T. Li, J.F. Li, Energy Environ. Sci. 11, 3531–3539 (2018)

    Article  CAS  Google Scholar 

  9. H. Tao, J. Wu, J. Eur. Ceram. Soc. 36, 1605–1612 (2016)

    Article  CAS  Google Scholar 

  10. H. Tao, W.J. Wu, J.G. Wu, J. Alloy Compd. 689, 759–766 (2016)

    Article  CAS  Google Scholar 

  11. F. Li, L. Wang, L. Jin, D. Lin, J. Li, Z. Li, Z. Xu, S. Zhang, IEEE Trans. Ultrason. Ferr. 62, 18–32 (2015)

    Article  Google Scholar 

  12. J. Fu, R.Z. Zuo, H. Qi, C. Zhang, J.F. Li, L.T. Li, Appl. Phys. Lett. 105, 4 (2014)

    Google Scholar 

  13. R.Z. Zuo, J. Fu, J. Am. Ceram. Soc. 94, 1467–1470 (2011)

    Article  CAS  Google Scholar 

  14. R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys. Status Solidi R 3, 142–144 (2009)

    Article  CAS  Google Scholar 

  15. R.P. Wang, H. Bando, M. Kidate, Y. Nishihara, M. Itoh, Jpn. J. Appl. Phys. 50, 5 (2011)

    Google Scholar 

  16. X. Lv, J.G. Wu, J. Mater. Chem. C 7, 2037–2048 (2019)

    Article  CAS  Google Scholar 

  17. R. Zuo, J. Fu, S. Lu, Z. Xu, J. Am. Ceram. Soc. 94, 4352–4357 (2011)

    Article  CAS  Google Scholar 

  18. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, J. Am. Ceram. Soc. 73, 3122–3125 (1990)

    Article  CAS  Google Scholar 

  19. C. Ang, Z. Jing, Z. Yu, J. Phys.-Condes. Mat. 14, 8901–8912 (2002)

    Article  CAS  Google Scholar 

  20. W. Chen, X. Yao, X.Y. Wei, Appl. Phys. Lett. 90 (2007)

  21. B. Malic, J. Bemard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28, 1191–1196 (2008)

    Article  CAS  Google Scholar 

  22. W. Liang, W. Wu, D. Xiao, J. Zhu, J. Wu, J. Mater. Sci. 46, 6871–6876 (2011)

    Article  CAS  Google Scholar 

  23. B. Zhang, J. Wu, X. Wang, X. Cheng, J. Zhu, D. Xiao, Curr. Appl. Phys. 13, 1647–1650 (2013)

    Article  Google Scholar 

  24. J.H. Gao, D.H. Xue, Y. Wang, D. Wang, L.X. Zhang, H.J. Wu, S.W. Guo, H.X. Bao, C. Zhou, W.F. Liu, S. Hou, G. Xiao, X.B. Ren, Appl. Phys. Lett. 99, 3 (2011)

    Google Scholar 

  25. V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95, 1–26 (2012)

    Article  CAS  Google Scholar 

  26. L. Jin, F. Li, S.J. Zhang, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  27. Z. Kong, W.F. Bai, P. Zheng, J.J. Zhang, F. Wen, D.Q. Chen, B. Shen, J.W. Zhai, Ceram. Int. 43, 7237–7242 (2017)

    Article  CAS  Google Scholar 

  28. X.M. Liu, X.L. Tan, Adv. Mater. 28, 574–578 (2016)

    Article  CAS  Google Scholar 

  29. Q.H. Zhang, X.Y. Zhao, R.B. Sun, H.S. Luo, Phys. Status. Solidi. A 208, 1012–1020 (2011)

    Article  CAS  Google Scholar 

  30. H.X. Fu, R.E. Cohen, Nature 403, 281–283 (2000)

    Article  CAS  Google Scholar 

  31. D. Damjanovic, Appl. Phys. Lett. 97, 3 (2010)

    Article  Google Scholar 

  32. B. Wu, H.J. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 138, 15459–15464 (2016)

    Article  CAS  Google Scholar 

  33. J. Fu, R.Z. Zuo, Z.K. Xu, Appl. Phys. Lett. 99, 3 (2011)

    Google Scholar 

  34. Y. Huan, X. Wang, Z. Shen, J. Kim, H. Zhou, L. Li, J. Am. Ceram. Soc. 97, 700–703 (2014)

    Article  CAS  Google Scholar 

  35. Y. Huan, X.H. Wang, J. Koruza, K. Wang, K.G. Webber, Y.N. Hao, L.T. Li, Sci. Rep. 6 (2016)

  36. J. Fu, R. Zuo, Acta. Mater. 61, 3687–3694 (2013)

    Article  CAS  Google Scholar 

  37. L. Jin, R.J. Huo, R.P. Guo, F. Li, D.W. Wang, Y. Tian, Q.Y. Hu, X.Y. Wei, Z.B. He, Y. Yan, G. Liu, A.C.S. Appl, Mater. Inter. 8, 31109–31119 (2016)

    Article  CAS  Google Scholar 

  38. H. Kungl, R. Theissmann, M. Knapp, C. Baehtz, H. Fuess, S. Wagner, T. Fett, M.J. Hoffmann, Acta. Mater. 55, 1849–1861 (2007)

    Article  CAS  Google Scholar 

  39. F. Li, L. Jin, Z. Xu, S.J. Zhang, Appl. Phys. Rev. 1, 21 (2014)

    Google Scholar 

  40. H.-B. Lee, D.-J. Heo, R.A. Malik, C.-H. Yoon, H.-S. Han, J.-S. Lee, Ceram. Int. 39, S705–S708 (2013)

    Article  CAS  Google Scholar 

  41. W.F. Bai, D.Q. Chen, Y.W. Huang, P. Zheng, J.S. Zhong, M.Y. Ding, Y.J. Yuan, B. Shen, J.W. Zhai, Z.G. Ji, Ceram. Int. 42, 7669–7680 (2016)

    Article  CAS  Google Scholar 

  42. T. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, X.L. Tan, Acta. Mater. 128, 337–344 (2017)

    Article  CAS  Google Scholar 

  43. H. Xi, L. Yu, H. Qian, F. Chen, M. Mao, Y. Liu, Y. Lyu, J. Mater. Sci. 55, 1388–1398 (2019)

    Article  Google Scholar 

  44. W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, W.L. Li, J. Eur. Ceram. Soc. 39, 4046–4052 (2019)

    Article  CAS  Google Scholar 

  45. P. Fan, Y. Zhang, Q. Zhang, B. Xie, Y. Zhu, M.A. Mawat, W. Ma, K. Liu, J. Xiao, H. Zhang, J. Eur. Ceram. Soc. 38, 4404–4413 (2018)

    Article  CAS  Google Scholar 

  46. X. Lv, Z. Li, J. Wu, J. Xi, M. Gong, D. Xiao, J. Zhu, Mater. Des. 109, 609–614 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Liu or Yinong Lyu.

Ethics declarations

Conflict of interest

The authors declare that there is no known financial interests or personal relationship that could have been influential to the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Z., Zhang, T. et al. High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics. J Mater Sci: Mater Electron 32, 16715–16725 (2021). https://doi.org/10.1007/s10854-021-06229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06229-2

Navigation