Skip to main content
Log in

Green synthesize of fly ash-based zeolite X: a potential microwave absorbent

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zeolite X is a potential electromagnetic wave (EMW) absorption material owning to its advantages of good dielectric properties, light weight and large specific surface area. Herein, high-purity zeolite X was prepared from fly ash using a green synthesis approach, in which only trace water was used and achieved zero discharge of waste water. Physiochemical properties of fabricated zeolite X were comprehensively evaluated through XRD, PSD, SEM, TG-DSC and BET test. XRD pattern shows the successful preparation of zeolite X with good crystallinity and high purity, and the average particle size is ~ 2.45 μm, which conforms to Gaussian distributions. The fabricated zeolite X exhibits typical octahedral structure and good thermal stability. It is noteworthy that the specific surface area is up to 473.56 m2/g, representing porous structure, which is beneficial to EMW attenuation. What’s more, the abundant crystal water and adsorbed water existing in the sample is conductive to dipole polarization, which further consume EMW energy. The effective absorption bandwidth (EAB) of the synthesized zeolite X is 2.08 GHz (13.36–15.44 GHz) at the thickness of 2.5 mm. This study provides an eco-friendly approach to change waste into valuables, and moreover the synthesized zeolite X is a potential EMW absorbing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Iqbal, F. Shahzad, K. Hantanasirisakul, Science 369, 446 (2020). https://doi.org/10.1126/science.aba7977

    Article  CAS  Google Scholar 

  2. I. Abdalla, A. Elhassan, J.Y. Yu, Carbon 157, 703–713 (2020). https://doi.org/10.1016/j.carbon.2019.11.004

    Article  CAS  Google Scholar 

  3. H.J. Wu, L.D. Wang, S.L. Guo, Appl. Phys. A. 108, 439–446 (2012). https://doi.org/10.1007/s00339-012-6906-6

    Article  CAS  Google Scholar 

  4. H.S. Liang, H. Xing, M. Qin, Compos. Part A-Appl. S. 135, 105959 (2020). https://doi.org/10.1016/j.compositesa.2020.105959

    Article  CAS  Google Scholar 

  5. D. Lan, M. Qin, J.L. Liu, Chem. Eng. J. 382, 122797 (2020). https://doi.org/10.1016/j.cej.2020.127313

    Article  CAS  Google Scholar 

  6. H.J. Wu, M. Qin, L.M. Zhang, Compos. Part B-Eng. 182, 107620 (2020). https://doi.org/10.1016/j.compositesb.2019.107620

    Article  CAS  Google Scholar 

  7. Q. Chang, H. Liang, B. Shi, J. Colloid Interf. Sci. 588, 336–345 (2021). https://doi.org/10.1016/j.jcis.2020.12.099

    Article  CAS  Google Scholar 

  8. M. Qin, L. Zhang, X. Zhao, Adv. Sci. (2021). https://doi.org/10.1002/advs.202004640

    Article  Google Scholar 

  9. H. Liang, J. Liu, Y. Zhang, Compos. Part B-Eng. 178, 107507 (2019). https://doi.org/10.1016/j.compositesb.2019.107507

    Article  CAS  Google Scholar 

  10. G. Chen, L. Zhang, X. Fan, J. Colloid Interf. Sci. 588, 813–825 (2021). https://doi.org/10.1016/j.jcis.2020.11.117

    Article  CAS  Google Scholar 

  11. Q. Shang, H. Feng, Z. Feng, J. Colloid Interf. Sci. 576, 444–456 (2020). https://doi.org/10.1016/j.jcis.2020.05.052

    Article  CAS  Google Scholar 

  12. T. Zhu, X. Zhang, Y. Han, Front. Chem. 7, 341 (2019). https://doi.org/10.3389/fchem.2019.00341

    Article  CAS  Google Scholar 

  13. S. Bai, M. Chu, L. Zhou, Energ. Source. Part A. (2019). https://doi.org/10.1080/15567036.2019.1661549

    Article  Google Scholar 

  14. C. Han, T. Yang, H. Liu, Environ. Sci. Pollut. R. 26, 10106–10116 (2019). https://doi.org/10.1007/s11356-019-04466-x

    Article  CAS  Google Scholar 

  15. Y. Liu, Q. Luo, G. Wang, Mater. Res. Express 5, 055507 (2018). https://doi.org/10.1088/2053-1591/aac3ae

    Article  CAS  Google Scholar 

  16. T. Yang, C. Han, H. Liu, Adv. Powder Technol. 30, 199–206 (2019). https://doi.org/10.1016/j.apt.2018.10.023

    Article  CAS  Google Scholar 

  17. Z. Tauanov, D. Shah, V. Inglezakis, J. Clean. Prod. 182, 616–623 (2018). https://doi.org/10.1016/j.jclepro.2018.02.047

    Article  CAS  Google Scholar 

  18. A. Grela, M. Hebda, M. Łach, Microporous Mesoporous Mater. 220, 155–162 (2016). https://doi.org/10.1016/j.micromeso.2015.08.036

    Article  CAS  Google Scholar 

  19. M. Osacký, H. Pálková, P. Hudec, Microporous Mesoporous Mater. 294, 109852 (2020). https://doi.org/10.1016/j.micromeso.2019.109852

    Article  CAS  Google Scholar 

  20. R.V. De La V. Mencía, E. Goiti, M. Ocejo, R.G. Giménez, Microporous Mesoporous Mater. 293, 109817 (2020). https://doi.org/10.1016/j.micromeso.2019.109817

    Article  CAS  Google Scholar 

  21. Z. Qiang, R. Li, Z. Yang, Energ. Fuel. 33, 6641–6649 (2019). https://doi.org/10.1021/acs.energyfuels.9b01268

    Article  CAS  Google Scholar 

  22. Y. Fang, T. Shi, X. Liang, Microporous Mesoporous Mater. 294, 109900 (2020). https://doi.org/10.1016/j.micromeso.2019.109900

    Article  CAS  Google Scholar 

  23. T. Le, Q. Wang, B. Pan, Microporous Mesoporous Mater. 284, 476–485 (2019). https://doi.org/10.1016/j.micromeso.2019.04.029

    Article  CAS  Google Scholar 

  24. S. Sivalingam, S. Sujit, Environ. Sci. Pollut. R. 26, 34693–34701 (2019). https://doi.org/10.1007/s11356-018-3664-9

    Article  CAS  Google Scholar 

  25. C.S. Cundy, P.A. Cox, Chem. Rev. 103, 663–702 (2003). https://doi.org/10.1021/cr020060i

    Article  CAS  Google Scholar 

  26. Q. Wu, X. Meng, X. Gao, Acc. Chem. Res. 51, 1396–1403 (2018). https://doi.org/10.1021/acs.accounts.8b00057

    Article  CAS  Google Scholar 

  27. W. Luo, X. Yang, Z. Wang, Microporous Mesoporous Mater. 243, 112–118 (2017). https://doi.org/10.1016/j.micromeso.2017.01.040

    Article  CAS  Google Scholar 

  28. J.L.X. Hong, T. Maneerung, S.N. Koh, S. Kawi, Ind. Eng. Chem. Res. 56, 11565–11574 (2017). https://doi.org/10.1021/acs.iecr.7b02885

    Article  CAS  Google Scholar 

  29. H. Tanaka, A. Fujii, Adv. Powder Technol. 20, 473–479 (2009). https://doi.org/10.1016/j.apt.2009.05.004

    Article  CAS  Google Scholar 

  30. S.H. Wu, C.C. Hsieh, C.C. Chiang, J. Therm. Anal. Calorim. 109, 945–950 (2012). https://doi.org/10.1007/s10973-011-1825-x

    Article  CAS  Google Scholar 

  31. A.C. Rust, J.K. Russell, R.J. Knight, J. Volcanol, Geoth. Res. 91, 79–96 (1999). https://doi.org/10.1016/S0377-0273(99)00055-4

    Article  CAS  Google Scholar 

  32. P. Hoekstra, W.T. Doyle, J. Colloid Interf, Sci. 36, 513–521 (1971). https://doi.org/10.1016/0021-9797(71)90386-9

    Article  CAS  Google Scholar 

  33. M. Xiao, X. Hu, Y. Gong, RSC Adv. 5, 100743–100749 (2015). https://doi.org/10.1039/C5RA17856H

    Article  CAS  Google Scholar 

  34. N. Koshy, D.N. Singh, J. Environ. Chem. Eng. 4, 1460–1472 (2016). https://doi.org/10.1016/j.jece.2016.02.002

    Article  CAS  Google Scholar 

  35. H. Wang, Q. Chang, F. Zhou, Sci. Adv. Mater. 11, 60–67 (2019). https://doi.org/10.1166/sam.2019.3387

    Article  CAS  Google Scholar 

  36. X. Xie, C. Ni, Z. Lin, Chem. Eng. J. 396, 125205 (2020). https://doi.org/10.1016/j.cej.2020.125205

    Article  CAS  Google Scholar 

  37. C. Ni, D. Wu, X. Xie, J. Magn. Magn. Mater. 503, 166631 (2020). https://doi.org/10.1016/j.jmmm.2020.166631

    Article  CAS  Google Scholar 

  38. J.L. Liu, H.S. Liang, H.J. Wu, Compos. A 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760

    Article  CAS  Google Scholar 

  39. H.J. Wu, Z. Zhao, G.L. Wu, J. Colloid Interface Sci. 566, 21–32 (2020). https://doi.org/10.1016/j.jcis.2020.01.064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Research Program of Yan’an University (Grant No. YDY2019-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bin Shi and Junjie Zhao have contributed equally to this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Zhao, J. & Chang, Q. Green synthesize of fly ash-based zeolite X: a potential microwave absorbent. J Mater Sci: Mater Electron 32, 26097–26104 (2021). https://doi.org/10.1007/s10854-021-06168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06168-y

Navigation