Skip to main content
Log in

Synthesis, structural and magnetic behavior and theoretical approach to study the magnetic and magnetocaloric properties of the half-doped perovskite Nd0.5Ba0.5CoO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current research work, half-doped perovskite cobaltite Nd0.5Ba0.5CoO3 (NBCO) was prepared by the sol–gel process. We study the structural, morphological, magnetocaloric and magnetic properties of NBCO. The X-ray diffraction patterns showed that the NBCO sample crystallizes in the orthorhombic distorted symmetry with the Pmmm space group. Magnetic measurements indicated the existence of a paramagnetic (PM)–ferromagnetic (FM) transition at TC = 125 K. A ferromagnetic-to-antiferromagnetic transition is observed at T = 25 K. The second-order transition was confirmed by both Banerjee criterion and construction of the universal curve. Indeed, the magnetic entropy change (-ΔSM) value estimated by Landau and Hamad theories is close to that obtained using the classical Maxwell relation. The value of the relative cooling power (RCP) under a magnetic field of 5 T is 114 J. kg−1; therefore, this compound can be considered as a potential candidate for application in the field of magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayer, J. Rouhi, S. Tajik, S.A. HadiBeitollahi, V.K. Gupta, S. Rajendran, L.F. SadeghRostamnia, F. Saberi-Movahed, S. Malekmohammadi, Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: A docking/experimental investigation. J. Ind. Eng. Chem. Res. 60(2), 816–823 (2021)

    Article  CAS  Google Scholar 

  2. F.A. Hezam, A. Rajeh, O. Nur, M.A. Mustafa, Synthesis, and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys. B 596, 412389 (2020)

    Article  CAS  Google Scholar 

  3. O. Tegus, E. Bruck, K.H.J. Buschow, F.R. de Boer, Nature 415, 114 (2002)

    Article  Google Scholar 

  4. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Modification, and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys. B 434, 57–63 (2014)

    Article  CAS  Google Scholar 

  5. Z. Gaoa, Z. Jiaa, K. Wanga, X. Liua, L. Bic, G. Wua, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020)

    Article  Google Scholar 

  6. H. Karimi-Maleh, Y. Orooji, A. Ayati, S. Qanbari, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, Fu. Li, M. Sillanpää, Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: A comprehensive review. J. of MolecularLiquids 325, 115062 (2021)

    Google Scholar 

  7. M.A. Ahmed, M.S. Selim, M.M. Arman, Novel multiferroic La095 Sb005 FeO3 orthoferrite. Mater. Chem. Phys. 129, 705–712 (2011)

    Article  CAS  Google Scholar 

  8. S.H. Sun, C.B. Murray, Weller, D, Folks, L, Moser, A: Monodisperse FePt nanoparticles and ferromagnetic FePt Nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  CAS  Google Scholar 

  9. M.M. Abutalib, A. Rajeh, Influence of Fe3O4 nanoparticles on the optical, magnetic, and electrical properties of PMMA/PEO composites: Combined FT-IR/DFT for electrochemical applications. J. Organometallic Chem. 920, 121348 (2020)

    Article  CAS  Google Scholar 

  10. H.K. Maleh, S. Jiaqian Qin, D. Vadivel, F.G. Durgalakshmi, M.S. Moscoso, Y. Orooji, Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. of Molecular Liquids 314, 113588 (2020)

    Article  Google Scholar 

  11. F. Zhang, W. Cui, B. Wang, Xu. Binghui, X. Liu, X. Liu, Z. Jia, Wu. Guanglei, Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. J Composites Part B 204, 108491 (2021)

    Article  CAS  Google Scholar 

  12. Hassan Karimi-Maleh, Fatemeh Karimi, Yasin orooji, Ghobad Mansouri, Amir Razmjou, Aysenur Aygun, Fatih Sen. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid A highly sensitive approach for determination cysteamine in the presence sterotonin. Sci Report 10, 11699 (2020).

  13. T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, L. Bi, Wu. Guanglei, MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx, as efficient electromagnetic waveabsorber. J. Chemical Engineering 414, 15128875 (2021)

    Article  Google Scholar 

  14. F. A. Hezam, A. Rajeh, O. Nur, M. A. Mustafaynthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. J. Physica B, Condensed Matter 596, 412389 (2020)

  15. Youssef Abderrazak, Photocatalysis: A step closer to the perfect synthesis J. Organometallic Chemistry 920121335 (2020).

  16. Oznur Karaagac, Busra Bilir, Hakan Kockar, Superparamagnetic Cobalt Ferrite Nanoparticles: Effect of Temperature and Base Concentration. J. Superconductivity and Novel Magnetism 28, 1021–1027 (2015)

  17. H. Lee, H.P. Shao, Y.Q. Huang, B. Kwak, Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan. IEEE Trans. Magn. 41(10), 4102–4104 (2005)

    Article  CAS  Google Scholar 

  18. A. Qana, Alsulami Structural, dielectric, and magnetic studies based on MWCNTs/NiFe2O4/ZnO nanoparticles dispersed in polymer PVA/PEO for electromagnetic applications. J. Mater. Sci.: Mater. Electron. 32, 2906–2924 (2021)

    Google Scholar 

  19. T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, V. Labhasetwar, Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2(3), 194–205 (2005)

    Article  CAS  Google Scholar 

  20. Mc Gill, S.L, Cuylear, C.L, Adolphi, N.L, Osi nki, M, Symth, H.D.C. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Trans. Magn. 8(1), 33–42 (2009).

  21. S. Gyergyek, M. Drofenik, D. Makovec, Oleic acid coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater. Chem. Phys. 133, 515–522 (2012)

    Article  CAS  Google Scholar 

  22. H. Li, X. Hao, H. Gong, Z. Jin, J. Colloid and Interface Science 586, 479–490 (2021)

    Article  Google Scholar 

  23. Y. Koseoglu, F. Kurtulus, H. Kockar, H. Guler, O. Karaagac, S. Kazan, B. Aktas, Magnetic characterizations of cobalt oxide nanoparticles. J. Superconductivity and Novel Magnetism 25, 2783–2787 (2012)

    Article  CAS  Google Scholar 

  24. P. Dutta, M.S. Seehra, S. Thota, Kumar. J. Phys. Condens. Matter. 20, 015218 (2008)

    Article  Google Scholar 

  25. Oznur Karaagac, BusraBilir, HakanKockar, Superparamagnetic Cobalt Ferrite Nanoparticles: Effect of Temperature and Base Concentration. J Supercond Nov Magn (2015)

  26. Köseo˘glu, Y, Akta¸s, B, Yıldız, F, Kim, D.K, Toprak, M, Muhammed, M Physica C 390, 197 (2003).

  27. W.L. Roth, J. Phys. Chem. Solids 25, 1 (1964)

    Article  CAS  Google Scholar 

  28. Kurtulu¸s, F, Güler, H: Inorg. Mater. 41(5), 483 (2005)

  29. Y. Ichiyanagi, Y. Kimishima, S. Yamada, J. Magn. Magn. Mater. 272–276, 1245 (2004)

    Article  Google Scholar 

  30. H.K. Lin, H.C. Chiu, H.C. Tsai, S.H. Chien, C.B. Wang, Catal. Lett. 88, 169 (2003)

    Article  CAS  Google Scholar 

  31. C. Spencer, D. Schroeder, Phys. Rev. 9, 3658 (1974)

    Article  CAS  Google Scholar 

  32. J. Khelifi, A. Tozri, F. Issaoui, E. Dhahri, E.K. Hlil, The influence of disorder on the appearance of Griffiths phase and magnetoresistive properties in (La1− xNdx) 2/3 (Ca1− ySry) 1/3MnO3 oxides. Ceramics International 40 (1), 1641–1649

  33. J. Exp, D.D. Khalyavin, I.O. Troyanchuk, N.V. Kasper, H. Szymczak, Phase Stratification in the Nd1-xBaxCoO3-δ (0.3 ≤ x ≤ 0.54) system. Theor. Phys. 93, 805–808 (2001)

    Google Scholar 

  34. D. D. Khalyavin, A. P. Sazonov, I. O. Troyanchuk, R. Szymczak, H. Szymczak. Phase relations in the systems Ln1-xBaxCoO3-δ (0<x ≤ 0.66; Ln = Nd, Sm). Inorg. Mater. 39, 1092–1096 (2003).

  35. A.P. Sazonov, I.O. Troyanchuk, V.V. Sikolenko, G.M. Chobot, H. Szymczak, Crystal structure, magnetic and electrical properties of the Nd1-xBaxCoO3 system. J. Phys: Condens. Matter 17, 4181–4195 (2005)

    CAS  Google Scholar 

  36. K. Conder, A. Podlesnyak, E. Pomjakushina, M. Stingaciu, Layered cobaltites: synthesis, oxygen nonstoichiometry, transport and magnetic properties. Acta Phys. Pol. A 111, 7–14 (2007)

    Article  CAS  Google Scholar 

  37. I.D. Seymour, A. Chroneos, J.A. Kilner, R.W. Grimes, Defect processes in orthorhombic LnBaCo2O5.5 double perovskites. Phys. Chem. Chem. Phys. 13, 15305–15310 (2011)

    Article  CAS  Google Scholar 

  38. H.-J. Lin, Y.Y. Chin, Z. Hu, G.J. Shu, F.C. Chou, H. Ohta, K. Yoshimura, S. Hébert, A. Maignan, A. Tanaka, L.H. Tjeng, C.T. Chen, Phys. Rev. B 81, 115138 (2010)

    Article  Google Scholar 

  39. Z. Hu, H. Wu, M.W. Haverkort, H.H. Hsieh, H.-J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C.T. Chen, L.H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004)

    Article  CAS  Google Scholar 

  40. R. H. Potze, G. A. Sawatzky, and M. Abbate, Phys. Rev. B 51, 11 501, (1995).

  41. Ebtesam E. Ateia · M. M. Arman · M. Morsy; Synthesis, characterization of NdCoO3 perovskite and its uses as humidity sensor; Applied Physics A, 3168–6 (2019).

  42. M. Mymona, A. Abutalib, Rajeh, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical, and mechanical properties of poly (ethylene oxide)/ poly (methylmethacrylate) composite. J. of Organometallic Chemistry 918, 121309 (2020)

    Article  Google Scholar 

  43. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical, and electrical properties of PAM/PEO composite. Phys. B 578(1), 411796 (2020)

    Article  CAS  Google Scholar 

  44. J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao, Xu. Binghui, Z. Jia, Wu. Guanglei, J. of Colloid and Interface Science 586, 479–490 (2021)

    Article  CAS  Google Scholar 

  45. O. Ben Mya, L. dos Santos-Gómez, J. M. Porras-Vázquez, M. Omari, J. R. Ramos-Barrado, D. Marrero-López .La1−xSrxFe0.7Ni0.3O3−δ as both cathode and anode materials for Solid Oxide Fuel Cells. J. Hydrogen Energy 42, 23160–23169 (2017).

  46. M. Khlifi, M. Bejar, O. EL Sadek, E. Dhahri, M.A. Ahmed, E.K. Hlil, Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2xxMnO3 (x = 0–0.20) manganitesoxides. J. Alloys and Compounds 509, 7410–7415 (2011)

    Article  CAS  Google Scholar 

  47. T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, L. Bi, Wu. Guanglei, J Chemical Engineering 414, 15128875 (2021)

    Google Scholar 

  48. D. Kumar, A.K. Singh, Investigation of structural and magnetic properties of Nd0.7Ba0.3Mn1-xTixO3 (x = 0.05, 0.15 and 0.25) manganites synthesized through a single-step process. J. Magn. Magn. Magn. 469, 264–273 (2019)

    Article  CAS  Google Scholar 

  49. V. Goldschmidt, Geochemistry (Oxford University Press, Oxford, 1958).

    Google Scholar 

  50. H.L. Yakel, On the structure of some compounds of the perovskite type. Acta Crystallogr. A 8, 394 (1955)

    Article  CAS  Google Scholar 

  51. P. Scherrer, Nachr. Ges.Wiss. Göttingen 98 (1994).

  52. Diana Kostyukova and Yong Hee Chung, Synthesis of Iron Oxide Nanoparticles Using Isobutanol. J. Magnet. Magnetic Mater. 409, 116–123 (2016)

    Google Scholar 

  53. D. Kumar, N.K. Verma, C.B. Singh, A.K. Singh, Crystallite size strain analysis of nanocrystalline La07Sr03MnO3 perovskite by Williamson-Hall plot method. AIP Conf. Proc. 1942, 050024 (2018)

    Article  Google Scholar 

  54. S. Wasti, E. Triggs, R. Farag, M. Auad, S. Adhikari, D. Bajwa, Mi. Li, A.J. Ragauskas, Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing. J of Composites Part B 205, 108529 (2021)

    Google Scholar 

  55. Diana Kostyukova, Yong Hee Chung. Synthesis of Iron Oxide Nanoparticles Using Isobutanol. J. Nanomaterials 4982675, 9 (2016).

  56. H.K. Maleh, S. Ranjbari, A.A. BaharehTanhaei, Y. Orooji, M. Alizadeh, F. Karimi, S. Salmanpour, J. Rouhi, M. Sillanpää, F. Sen, Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. J. Environ. Res. 195, 110809 (2021)

    Article  Google Scholar 

  57. M. R. Ibarra et al, Phys. Rev. B 57, R3217 (1998); S. Hirahara et al, J.Magn.Magn.Mater.310, 1866 (2007).

  58. O. Karaagac, H. Kockar, Iron oxide nanoparticles Co-precipitated in air environment: Effect of [Fe+2]/ [Fe+3] Ratio. IEEE Trans. Magn. 48, 1532–1536 (2012)

    Article  CAS  Google Scholar 

  59. Fatmahan Ozel, Hakan Kockar, Seda Beyaz, Oznur Karaagac, Taner Tanrisev (2013) Superparamagnetic iron oxide nanoparticles: effect of iron oleate precursors obtained with a simple way. J Materials Science –Materials Electronics Aterials. 24, 3080-3073

  60. S. Chikazumi, S. Charap, Physics of Magnetism (Wiley, New York. p, 1964), p. 153

    Google Scholar 

  61. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 115028 (2009)

    Article  Google Scholar 

  62. Maris, G.; Ren, Y.; Volotchaev, V.; Zobel, C.; Lorenz, T.; Palstra, T. T. M. Evidence for OrbitalOrdering in LaCoO3. Phys. Rev. B, 67, 224423 (2003).

  63. J. Dhahri, A. Dhahri, M. Oumezzine, E. Dhahri, Effect of Sn-doping on the structural, magnetic and magnetocaloric properties of compounds. J. Magn. Magn. Mater. 320, 2613 (2008)

    Article  CAS  Google Scholar 

  64. Rafik Hamdi. J. Khelifi. I. Walha. E. Dhahri. E. K. Hlil. Impact of Titanium Doping on Structural, Magnetic, and Magnetocaloric Properties and Order of Transition in La0.5Pr0.3Ba0.2Mn1-xTixO3 (x = 0.0 and 0.1) Manganite; Journal of Superconductivity and Novel Magnetism (2019).

  65. M.A. Hamad, Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Transit. 85, 106–112 (2012)

    Article  CAS  Google Scholar 

  66. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonca, J.P. Araujo, M.A. Sa, P.B. Tavares, J.M. Vieira, Magnetocaloriceffect in Er- and Eu-substitutedferromagnetic La-Sr manganites. J. Magn. Magn. Mater. 290–291, 686–689 (2005)

    Article  Google Scholar 

  67. V. Franco, A. Conde, J.M. Romero-Enriqu, J.S. Blázquez, A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys.: Condens. Matter 20, 285207 (2008)

    Google Scholar 

  68. N. Ghosh, J. Supercond, Nov. Magn. 26, 1451 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2020/01/16565.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Lamjed Bouazizi or J. Khelifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souifi, K., Nasri, M., Hcini, S. et al. Synthesis, structural and magnetic behavior and theoretical approach to study the magnetic and magnetocaloric properties of the half-doped perovskite Nd0.5Ba0.5CoO3. J Mater Sci: Mater Electron 32, 15291–15306 (2021). https://doi.org/10.1007/s10854-021-06079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06079-y

Navigation