Skip to main content

Advertisement

Log in

Green reduction of graphene oxide using phytochemicals extracted from Pomelo Grandis and Tamarindus indica and its supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Green synthesis method is an effective approach for reduction of graphene oxide (GO) and the surface tuning of graphene nanosheets. In this work, facile green approach for the reduction of graphene oxide was adopted by utilizing phytochemical extracts of Citrus grandis (Pomelo) and Tamarindus indica (Tamarind). FTIR analysis showed significant reduction/elimination of the peaks that corresponds to the oxygen containing groups. XRD and Raman analysis confirmed the successful reduction of GO after treating with fruit extracts. The morphological analysis by SEM and TEM images further confirmed the formation of graphene nanosheets. The conductivity of both Pomelo-rGO (P-rGO) and Tamarind-rGO (T-rGO) were found to be 104-folds higher than that of GO. The electrochemical characterization of the synthesized rGO was done by cyclic voltammetry (CV). Specific capacitance of 65.25 F/g and 47.33 F/g were recorded for T-rGO and P-rGO, respectively. The results showed that this green synthesis route is promising for the large-scale production of rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Ismail, Green reduction of graphene oxide by plant extracts: a short review. Ceram. Int. 45(18), 23857–23868 (2019)

    CAS  Google Scholar 

  2. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359 (2009)

    CAS  Google Scholar 

  3. G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, Graphene oxide: the mechanisms of oxidation and exfoliation. J. Mater. Sci. 47(10), 4400–4409 (2012). https://doi.org/10.1007/s10853-012-6294-5

    Article  CAS  Google Scholar 

  4. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998). https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  5. M.Z. Ansari, R. Johari, W.A. Siddiqi, Novel and green synthesis of chemically reduced graphene sheets using Phyllanthus emblica (Indian Gooseberry) and its photovoltaic activity. Mater. Res. Express 6(5), 055027 (2019)

    CAS  Google Scholar 

  6. A. Furst, R.C. Berlo, S. Hooton, Hydrazine as a reducing agent for organic compounds (catalytic hydrazine reductions). Chem. Rev. 65, 51–68 (1965)

    CAS  Google Scholar 

  7. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)

    CAS  Google Scholar 

  8. O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8), 3015–3025 (2012)

    CAS  Google Scholar 

  9. Y. Wang, Z. Shi, J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mater. Interface. 3(4), 1127–1133 (2011)

    CAS  Google Scholar 

  10. P. Shubha, K. Namratha, H.S. Aparna, N.R. Ashok, M.S. Mustak, J. Chatterjee, K. Byrappa, Facile green reduction of graphene oxide using Ocimum sanctum hydroalcoholic extract and evaluation of its cellular toxicity. Mater. Chem. Phys. 198, 66–72 (2017)

    CAS  Google Scholar 

  11. T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, J.H. Lee, A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50(3), 914–921 (2012)

    CAS  Google Scholar 

  12. S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14), 5331–5339 (2012)

    CAS  Google Scholar 

  13. O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66, 395–406 (2014)

    CAS  Google Scholar 

  14. C. Li, Z. Zhuang, X. Jin, Z. Chen, A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Appl. Surf. Sci. 422, 469–474 (2017)

    CAS  Google Scholar 

  15. S.B. Maddinedi, B.K. Mandal, R. Vankayala, P. Kalluru, S.R. Pamanji, Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 117–124 (2015)

    CAS  Google Scholar 

  16. M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 114(14), 6426–6432 (2010)

    Google Scholar 

  17. S.W. Chong, C.W. Lai, S.B.A. Hamid, Green preparation of reduced graphene oxide using a natural reducing agent. Ceram. Int. 41(8), 9505–9513 (2015)

    CAS  Google Scholar 

  18. H.J. Chu, C.Y. Lee, N.H. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon 80, 725–733 (2014)

    CAS  Google Scholar 

  19. J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Environment friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 22(7), 2213–2218 (2010)

    CAS  Google Scholar 

  20. O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22(27), 13773–13781 (2012)

    CAS  Google Scholar 

  21. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)

    CAS  Google Scholar 

  22. A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21(29), 10907–10914 (2011)

    CAS  Google Scholar 

  23. J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng, Toward a Universal “Adhesive Nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 132(21), 7279–7281 (2010)

    CAS  Google Scholar 

  24. O. Akhavan, E. Ghaderi, Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5), 1853–1860 (2012)

    CAS  Google Scholar 

  25. O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81, 158–166 (2015)

    CAS  Google Scholar 

  26. O. Akhavan, R. Azimirad, H.T. Gholizadeh, F. Ghorbani, Hydrogen-rich water for green reduction of graphene oxide suspensions. Int. J. Hydrogen Energy 40(16), 5553–5560 (2015)

    CAS  Google Scholar 

  27. S. Hatamie, O. Akhavan, S.K. Sadrnezhaad, M.M. Ahadian, M.M. Shirolkar, H.Q. Wang, Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 55, 482–489 (2015)

    CAS  Google Scholar 

  28. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    CAS  Google Scholar 

  29. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Water soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25(20), 12030–12033 (2009)

    CAS  Google Scholar 

  30. M. Ali, N.E.N. Rumpa, S. Paul, M. Hossen, E.M. Tanvir, T. Hossan, M. Saha et al., Antioxidant potential, subacute toxicity, and beneficiary effects of methanolic extract of pomelo (Citrus grandis L. Osbeck) in long evan rats. J. Toxicol. (2019). https://doi.org/10.1155/2019/2529569

    Article  Google Scholar 

  31. G. Xu, D. Liu, J. Chen, X. Ye, Y. Ma, J. Shi, Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem. 106(2), 545–551 (2008)

    CAS  Google Scholar 

  32. J.J. Toh, H.E. Khoo, A. Azrina, Comparison of antioxidant properties of pomelo [Citrus grandis (L) Osbeck] varieties. Int. Food Res. J. 20(4), 1661–1668 (2013)

    Google Scholar 

  33. K.S. Israel, C. Murthy, B.P.D.R. Hosamani, Value addition of tamarind products in Karnataka. J. Pharmacogn. Phytochem. 8(6), 726–730 (2019)

    Google Scholar 

  34. Y.Y. Soong, P.J. Barlow, Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 88(3), 411–417 (2004)

    CAS  Google Scholar 

  35. F.U. Ugwuona, J.C. Onweluzo, Assessment of antioxidant properties of tamarind fruit pulp and its effect on storage stability of African breadfruit seed dhal and flour. Niger. Food J. 31(2), 41–47 (2013)

    Google Scholar 

  36. N.J. Panicker, J. Das, P.P. Sahu, Synthesis of highly oxidized graphene (HOG) by using HNO3 and KMnO4 as oxidizing agents. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.037

    Article  Google Scholar 

  37. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    CAS  Google Scholar 

  38. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2009)

    CAS  Google Scholar 

  39. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6, 1–18 (2017)

    CAS  Google Scholar 

  40. S. Sadhukhan, T.K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, D. Chattopadhyay, Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property. Mater. Res. Bull. 79, 41–51 (2016)

    CAS  Google Scholar 

  41. S. Sadhukhan, T.K. Ghosh, I. Roy, D. Rana, A. Bhattacharyya, R. Saha, S. Chattopadhyay, S. Khatua, K. Acharya, D. Chattopadhyay, Green synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites and its electrical and antibacterial properties. Mater. Sci. Eng. C 99, 696–709 (2019)

    CAS  Google Scholar 

  42. J. Shen, T. Li, M. Shi, N. Li, M. Ye, Polyelectrolyte-assisted one-step hydrothermal synthesis of Ag-reduced graphene oxide composite and its antibacterial properties. Mater. Sci. Eng. C 32, 2042–2047 (2012)

    CAS  Google Scholar 

  43. V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A. Buasri, Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/923403

    Article  Google Scholar 

  44. R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater. Lett. 160, 355–358 (2015)

    CAS  Google Scholar 

  45. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)

    CAS  Google Scholar 

  46. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016)

    CAS  Google Scholar 

  47. Y. Hu, S. Song, A. Lopez-Valdivieso, Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. J. Colloid Interface Sci. 450, 68–73 (2015)

    CAS  Google Scholar 

  48. Z. Liu, X. Duan, X. Zhou, G. Qian, J. Zhou, W. Yuan, Controlling and formation mechanism of oxygen-containing groups on graphite oxide. Ind. Eng. Chem. Res. 53(1), 253–258 (2014)

    CAS  Google Scholar 

  49. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prudhomme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    CAS  Google Scholar 

  50. D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai, T. Yu, A.T.S. Wee, Z. Shen, Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 49(4), 1362–1366 (2011)

    CAS  Google Scholar 

  51. B. Li, X. Jin, J. Lin, Z. Chen, Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution. J. Clean. Prod. 189, 128–134 (2018)

    CAS  Google Scholar 

  52. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101 (2008)

    CAS  Google Scholar 

  53. Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet–visible spectroscopy of graphene oxides. AIP Adv. 2(3), 032146 (2012). https://doi.org/10.1063/1.4747817

    Article  CAS  Google Scholar 

  54. J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)

    CAS  Google Scholar 

  55. N.S. Pesika, K.J. Stebe, P.C. Searson, Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv. Mater. 15, 1289–1291 (2003)

    CAS  Google Scholar 

  56. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010)

    CAS  Google Scholar 

  57. H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. 26, 3880–3882 (2009)

    Google Scholar 

  58. G. Lee, B.S. Kim, Biological reduction of graphene oxide using plant leaf extracts. Biotechnol. Prog. 30(2), 463–469 (2014). https://doi.org/10.1002/btpr.1862

    Article  CAS  Google Scholar 

  59. J. Long, S. Li, J. Liang, Z. Wang, B. Liang, Preparation and characterization of graphene oxide and it application as a reinforcement in polypropylene composites. Polym. Compos. 40(2), 723–729 (2018). https://doi.org/10.1002/pc.24724

    Article  CAS  Google Scholar 

  60. L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, B. Liu, Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. J. Phys. Chem. C 116(21), 11741–11745 (2012)

    CAS  Google Scholar 

  61. P. Cui, J. Lee, E. Hwang, H. Lee, One-pot reduction of graphene oxide at sub-zero temperatures. Chem. Commun. 47, 12370–12372 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Dept. of Electronics and Communication Engineering, Tezpur University for providing the Lab facility. The authors also thank SAIC, Tezpur University for providing characterization facility, Mr. Ratan Baruah and Mr. Prakash Kurmi, SAIC, Tezpur University for his help in the material characterization. We are also thankful to Mr. Arun Kumar Gupta, Dept. of FET, Tezpur University for his help in characterization and Mr. Jagat Das, Dept. of ECE, Tezpur University for his help in editing the manuscript.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

NJP: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Software; Validation; Visualization; Roles/Writing—original draft; Writing—review & editing. Prof. PPS: Supervision.

Corresponding author

Correspondence to Nithin Joseph Panicker.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicker, N.J., Sahu, P.P. Green reduction of graphene oxide using phytochemicals extracted from Pomelo Grandis and Tamarindus indica and its supercapacitor applications. J Mater Sci: Mater Electron 32, 15265–15278 (2021). https://doi.org/10.1007/s10854-021-06077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06077-0

Navigation