Skip to main content
Log in

Regulating pH value synthesis of NiCo2O4 with excellent electromagnetic wave absorbing performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In last several decades, electromagnetic wave (EMW) absorbing materials have attracted much attention because of their ability to attenuate EMW and reduce the electromagnetic pollution caused by the rapid development of information technology. Among many electromagnetic wave absorbers, nickel cobaltite (NiCo2O4) stands out for its excellent electromagnetic wave absorbing performance. However, as the most commonly used synthesis method of NiCo2O4-based materials, hydrothermal method is time-consuming and complicated, which hinders the actual production and application of nickel cobaltite. In this work, agglomerate NiCo2O4 of lamellar accumulation was prepared by chemical coprecipitation and calcination with oxalic acid as precipitant. The effect of pH control on the properties of product was studied by adding ammonia to change the microenvironment of coprecipitation system. When the pH value of the coprecipitation system is 7, the absorbent has been prepared successfully which has broad absorption bandwidth of 6.26 GHz (11.74–18 GHz) and ultrathin matching thickness of 1.58 mm. The synthesis method is simple, convenient, time-saving and energy-saving, and the product has excellent electromagnetic wave absorption capacity, which has a good industrial application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Mondal, D. Su, S.Q. Chen, X.Q. Xie, G.X. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS. Appl. Mater. Interfaces 6, 17 (2014)

    Article  Google Scholar 

  2. H.J. Wu, M. Qin, L.M. Zhang, NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance. Compos. Part B- Eng. 182, 107620 (2020)

  3. M. Yang, Z.H. Wang, R. Ji, R.J. Jin, J.L. Liu, X.L. Song, Z.D. Nan, M. Zhang, Tunable microwave absorbing properties based on facile microwave-induced in-situ formation of interfacial structures. Appl. Surf. Sci. 545, 149079 (2021)

    Article  CAS  Google Scholar 

  4. L. Pang, H. Luo, X.M. Fan, W. Zhou, P.J. Chen, P. Xiao, Q.B. Wen, Y. Li, Z.J. Yu, Ralf Riedel, Electromagnetic wave absorbing performance of multiphase (SiC/HfC/C)/SiO2 nanocomposites with an unique microstructure. Journal of the European Ceramic Society. 41, 2425–2434 (2021)

    Article  CAS  Google Scholar 

  5. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Article  CAS  Google Scholar 

  6. W.G. Chen, J.Q. Dai, X.B. Zhou, Y.M. Ding, J.B. Xia, Preparation and magnetic properties of NiCuZn ferrite powder by chemical coprecipitation. Funct. Mater. 42, 332–334 (2011)

    CAS  Google Scholar 

  7. M. Zhang, C. Han, W.Q. Cao, M.S. Cao, H.J. Yang, J. Yuan, A Nano–micro engineering nanofberfor electromagnetic absorber, green shieldingand sensor. Nano-Micro Lett. 13, 27 (2021)

  8. C. Han, M. Zhang, W.Q. Cao, M.S. Cao, Electrospinning and in-situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption. Carbon. 171, 953–962 (2021)

    Article  CAS  Google Scholar 

  9. O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Nat. Commun. 6, 6628 (2015)

    Article  CAS  Google Scholar 

  10. Y.C. Zhou, B. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, S.J. Wu, W. Xu, Electromagnetic wave absorbing properties of TMCs (TM = Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol. 74, 105–118 (2021)

    Article  Google Scholar 

  11. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, K. Kubanych, Microwave absorbing properties of ferrites and their composites: a review. J. Magn. Magn. Mater. 529, 167839 (2021)

    Article  CAS  Google Scholar 

  12. X.H. Ren, G.L. Xu, Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+. J. Magn. Magn. Mater.. 354, 44–48 (2014)

    Article  CAS  Google Scholar 

  13. H.S. Liang, H. Xing, M. Qin, H.J. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Compos. Part A-Appl. Sci. Manuf.. 135, 105959 (2020)

    Article  CAS  Google Scholar 

  14. X.G. Huang, Y.S. Qin, Y.B. Ma, Y.Y. Chen, Preparation and electromagnetic properties of nanosized ZnFe2O4 with various shapes. Ceram. Int. 45(15), 18389–18397 (2019)

    Article  CAS  Google Scholar 

  15. J.L. Liu, M. Wang, L.M. Zhang, D.Y. Zang, H. Liu, L.F. Liotta, H.J. Wu, Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption. J. Colloid Interface Sci. 591, 148–160 (2021)

    Article  CAS  Google Scholar 

  16. Q. Chang, H.S. Liang, B. Shi, X.L. Li, Y.T. Zhang, L.M. Zhang, H.J. Wu, Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 588, 336–345 (2021)

    Article  CAS  Google Scholar 

  17. C.C. Ma, W. Wang, Q. Wang, N. Sun, S.Q. Hu, S. Wei, H.M. Feng, X.P. Hao, W. li, D.B. Kong, S.H. Wang, S.G. Chen, Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance. J. Colloid Interface Sci. 594, 604–620 (2021)

  18. J.C. Liu, Z.H. Yang, L.J. Yang, Y.T. Zhu, T. Xue, G.Y. Xu, Rational design of yolk-shell NiCo2O4@void@NiCo2S4 nanospheres for effective enhancement in microwave absorption. Journal of Alloys and Compounds. 853, 157403 (2021)

    Article  CAS  Google Scholar 

  19. X.G. Su, J. Wang, X.X. Zhang, Z.J. Liu, W. Dai, W. Chen, B. Zhang, Construction of sandwich-like NiCo2O4/Graphite nanosheets/NiCo2O4 heterostructures for a tunable microwave absorber. Ceram. Int. 46, 19293–19301 (2020)

    Article  CAS  Google Scholar 

  20. J.W. Wen, X.X. Li, G. Chen, Z.N. Wang, X.J. Zhou, H.J. Wu, Controllable adjustment of cavity of core-shelled Co3O4@NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J. Colloid Interface Sci. 594, 424–434 (2021)

  21. C. Han, M. Zhang, W.Q. Cao, M.S. Cao, Electrospinning and in-situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption. Carbon. Volume 171, 953–962 (2021)

    Article  CAS  Google Scholar 

  22. K. Qian, Z.J. Yao, H.Y. Lin, J.T. Zhou, A.A. Haidry, T.B.H. Qi, W.J. Chen, X.L. Guo, The influence of Nd substitution in Ni–Zn ferrites for the improved microwave absorption properties. Ceram. Int. 46, 227–235 (2020)

    Article  CAS  Google Scholar 

  23. M. Qin, D. Lan, G.L. Wu, X.G. Qiao, H.J. Wu, Sodium citrate assisted hydrothermal synthesis of nickel cobaltate absorbers with tunable morphology and complex dielectric parameters toward efficient electromagnetic wave absorption. Appl. Surf. Sci. 504, 144480 (2020)

    Article  CAS  Google Scholar 

  24. M. Qin, H.S. Liang, X.R. Zhao, H.J. Wu, Glycine-assisted solution combustion synthesis of NiCo2O4 electromagnetic wave absorber with wide absorption bandwidth. Ceram. Int. 46, 22313–22320 (2020)

    Article  CAS  Google Scholar 

  25. G.Q. Zhao, K.H. Qiu, X.M. Gao, Synthesis of nano TiO2 by chemical precipitation powder and its application. Mater. Guide. 11, 47–49 (2003)

  26. U.T. Nakate, S.N. Kale, Microwave assisted synthesis and characterizations of NiCo2O4 nanoplates and Electrical, magnetic properties. Mater. Today: Proc. 3, 1992–1998 (2016)

  27. Y. Liu, P. Liu, W. Qin, X.j. Wu, G.W. Yang, Laser modification-induced NiCo2O4–δ with high exterior Ni3+/Ni2+ ratio and substantial oxygen vacancies for electrocatalysis. Electrochim. Acta 297, 623–632 (2019)

    Article  CAS  Google Scholar 

  28. M. Qin, L.M. Zhang, H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Appl. Surf. Sci. 515, 146132 (2020)

    Article  CAS  Google Scholar 

  29. S. Adhikari, Y. Kwon, D. Kim, Three-dimensional core–shell structured NiCo2O4@CoS/Ni-Foam electrocatalyst for oxygen evolution reaction and electrocatalytic oxidation of urea. Chemical Engineering Journal. 402, 126192 (2020)

    Article  CAS  Google Scholar 

  30. F. Dang, Y.L. Wang, J.N. Gao, L.P. Xu, P.F. Cheng, L. Lv, B. Zhang, X. Li, C. Wang, Hierarchical flower-like NiCo2O4 applied in n-butanol detection at low temperature. Sensors and Actuators B: Chemical. 320, 128577 (2020)

    Article  CAS  Google Scholar 

  31. Y.Z. Su, Q.Z. Xu, G.F. Chen, H. Cheng, N. Li, Z.Q. Liu, One dimensionally spinel NiCo2O4 nanowire arrays: facile synthesis, water oxidation, and magnetic properties. Electrochim. Acta 174, 1216–1224 (2015)

    Article  CAS  Google Scholar 

  32. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Ríos, F.J. Berry, Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study. J. Solid State Chem. 153, 74–81 (2000)

  33. X.G. Su, J. Wang, X.X. Zhang, S.Q. Huo, W. Chen, W. Dai, B. Zhang, Design of controlled-morphology NiCo2O4 with tunable and excellent microwave absorption performance. Ceram. Int. 46, 7833–7841 (2020)

    Article  CAS  Google Scholar 

  34. Q.W. Ding, M.G. Zhang, C.R. Zhang, T.W. Qian, Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron. Journal of Magnetism and Magnetic Materials. 331, 77–81 (2013)

    Article  CAS  Google Scholar 

  35. S.B. Lu, Y. Meng, H.B. Wang, F.F. Wang, J.T. Yuan, H. Chen, Y.H. Dai, J.N. Chen, Great enhancement of electromagnetic wave absorption of MWCNTs@carbonaceous CoO composites derived from MWCNTs-interconnected zeolitic imidazole framework. Appl. Surf. Sci. 481, 99–107 (2019)

    Article  CAS  Google Scholar 

  36. X.Q. Li, X.Y. Zeng, X.J. Li, H.H. Yan, X.H. Wang, X.C. Pan, Formation mechanism and electromagnetic-microwave-absorbing properties of carbon-encapsulated permalloy nanoparticles prepared by detonation. Materials Chemistry and Physics. 220, 1–10 (2018)

    Article  CAS  Google Scholar 

  37. H.X. Zhang, B.B. Wang, A.L. Feng, N. Zhang, Z.R. Jia, Z.Y. Huang, X.H. Liu, G.L. Wu, Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos Part B 167, 690–699 (2019)

    Article  CAS  Google Scholar 

  38. K.D. Jiang, Y. Liu, Y.F. Pan, R. Wang, P.B. Hu, R.J. He, L.L. Zhang, G.X. Tong, Monodisperse NixFe3–xO4 nanospheres: Metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties. Appl. Surf. Sci. 404, 40–48 (2017)

    Article  CAS  Google Scholar 

  39. M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Small. 14, 1800987 (2018)

    Article  CAS  Google Scholar 

  40. Z.H. Zhao, K.C. Kou, L.M. Zhang, H.J. Wu, High efficiency electromagnetic wave absorber derived from transition metal layered double hydroxides. J. Colloid Interface Sci. 579, 733–740 (2020)

    Article  CAS  Google Scholar 

  41. D. Lan, Z.H. Zhao, Z.G. Gao, K.C. Kou, G.L. Wu, H.J. Wu, Porous high entropy alloys for electromagnetic wave absorption. Journal of Magnetism and Magnetic Materials. 512, 167065 (2020)

    Article  CAS  Google Scholar 

  42. J. Zhan, Y.L. Yao, C.F. Zhang, C.J. Li, Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure. Journal of Alloys and Compounds. 585, 240–244 (2014)

    Article  CAS  Google Scholar 

  43. Y.B. Feng, T. Qiu, Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method. J. Alloy. Compd. 513, 455–459 (2012)

    Article  CAS  Google Scholar 

  44. Z. Ma, Y. Zhang, C.T. Cao, J. Yuan, Q.F. Liu, J.B. Wang, Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Physica B 406, 4620–4624 (2011)

    Article  CAS  Google Scholar 

  45. Q.M. Hu, R.L. Yang, Z.C. Mo, D.W. Lu, L.L. Yang, Z.F. He, H. Zhu, Z.K. Tang, X.C. Gui, Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon. 153, 737–744 (2019)

    Article  CAS  Google Scholar 

  46. J. Zhang, Y.C. Su, Q.S. Yu, Z.B. Luo, H.Z. Zhang, Tuning the impedance matching of microsphere Co for strong broadband absorption. Journal of Magnetism and Magnetic Materials. 528, 167720 (2021)

    Article  CAS  Google Scholar 

  47. B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao, L. Liu, X.G. Huang, Z.J. Tian, G.B. Ji, From intrinsic dielectric loss to geometry patterns: Dual-principlesstrategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2021)

    Article  CAS  Google Scholar 

  48. W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, G.B. Ji, Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption. Nano-Micro Letters 13, 102 (2021)

  49. W.H. Gu, S.J.H. Ong, Y. Zhao, Z.C. Xu, G.B. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A. 46, 24368–24387 (2020)

    Google Scholar 

  50. T.Q. Hou, B.B. Wang, M.L. Ma, A.L. Feng, Z.Y. Huang, Y. Zhang, Z.R. Jia, G.X. Tan, H.J. Cao, G.B. Wu, Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. Part B- Eng. 180, 107577 (2020)

  51. M.L. Ma, W.T. Li, Z.Y. Tong, Y. Ma, Y.X. Bi, Z.J. Liao, J. Zhou, G.L. Wu, M.X. Li, J.W. Yue, X.Y. Song, X.Y. Zhang, NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 578, 58–68 (2020)

    Article  CAS  Google Scholar 

  52. J.L. Fan, W.J. Xing, Y. Huang, J.X. Dai, Q. Liu, F. Hu, G.L. Xu, Facile fabrication hierarchical urchin-like C/NiCo2O4/ZnO composites as excellent microwave absorbers. J. Alloys Compd. 821, 153491 (2020)

    Article  CAS  Google Scholar 

  53. H.Y. Wang, J. Cui, Preparation of NiCo2O4 with different morphologies and its effect on absorbing properties. Mater. Lett. 236, 465–467 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation of China (Grants Nos. 51872238, 21806129 and 52074227), the Fundamental Research Funds for the Central Universities (Nos. 3102018zy045 and 3102019AX11), and the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2020JM-118 and 2017JQ5116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhang, Hu Liu or Hongjing Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Zhang, L., Liu, H. et al. Regulating pH value synthesis of NiCo2O4 with excellent electromagnetic wave absorbing performance. J Mater Sci: Mater Electron 32, 26059–26073 (2021). https://doi.org/10.1007/s10854-021-06055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06055-6

Navigation