Skip to main content
Log in

Excellent piezoelectric property and thermal stability of Pb(Sc, Nb)O3-Pb(Hf, Ti)O3ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

xPb(Sc1/2Nb1/2)O3–(1 − x)Pb(Hf1−yTiy)O3 piezoelectric ceramics were prepared by solid-state route, and the phase structures and piezoelectric properties of ceramics were systematically investigated. Results showed that the sample with the composition of x = 0.07 and y = 0.53 possessed higher phase coexistence between the rhombohedral and tetragonal, and exhibited the optimal properties among different constituent systems, i.e., TC = 355 °C, d33 = 400 pC/N, εr = 1390, and tan δ = 1.05%. Furthermore, the effects of temperature on d33, leakage current density, P-E loop, and unipolar strain were studied for xPb(Sc1/2Nb1/2)O3–(1 − x)Pb(Hf0.47Ti0.53)O3 samples. The sample with x = 0.07 revealed better temperature stability as well, the reason of which was analyzed in detail. The study indicates that the 0.07Pb(Sc1/2Nb1/2)O3–0.93Pb(Hf0.47Ti0.53)O3 piezoelectric ceramic has excellently comprehensive properties suitable for application in higher temperature condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behaviour in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)

    Article  CAS  Google Scholar 

  2. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Materials for high temperature acoustic and vibration sensors: a review. Appl. Acoust. 41, 299–324 (1994)

    Article  Google Scholar 

  3. S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

    Article  CAS  Google Scholar 

  4. I. Grinberg, M.R. Suchomel, P.K. Davies, A.M. Rappe, Predicting morphotropic phase boundary locations and transition temperatures in Pb and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations. J. Appl. Phys. 98, 094111 (2005)

    Article  Google Scholar 

  5. B. Praveenkumar, H.H. Kumar, D.K. Kharat, B.S. Murty, Investigation and characterization of La-doped PZT nano crystalline ceramics prepared by mechanical activation route. Mater. Chem. Phys. 112, 31–34 (2008)

    Article  CAS  Google Scholar 

  6. A. Hall, M. Allahverdi, E.K. Akdogan, A. Safari, Piezoelectric/electrostrictive multi material PMN-PT monomorph actuators. J. Eur. Ceram. Soc. 25, 2991–2997 (2005)

    Article  CAS  Google Scholar 

  7. H. Uršič, B. Malič, J. Cilenšek, T. Rojac, B. Kmet, M. Kosec, Linear thermal expansion coefficients of relaxor-ferroelectric 0.57Pb(Sc1/2Nb1/2)O3–0.43PbTiO3 ceramics in a wide temperature range. J. Eur. Ceram. Soc. 33, 2167–2171 (2013)

    Article  Google Scholar 

  8. X.Y. Gao, J.E. Wu, Y. Yu, Z.Q. Chu, H.D. Shi, S.X. Dong, Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv. Fun. Mater. 28, 1706895 (2018)

    Article  Google Scholar 

  9. M. Kobune, K. Muto, Y. Akiyama, Piezoelectric and ferroelectric properties of Pb(Zn1/3Nb2/3)O3–PbTiO3–PbZrO3 ceramics. J. Ceram. Soc. Jpn. 110, 12–17 (2002)

    Article  CAS  Google Scholar 

  10. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349–354 (2018)

    Article  CAS  Google Scholar 

  11. S. Zhang, L.C. Lim, Complete sets of elastic, dielectric, and piezoelectric properties of [001]-poled Rhombohedral Pb(Zn1/3Nb2/3)O3-(4.5-7)%PbTiO3 single crystals. IEEE T. Ultrason. Ferr. 66, 816–819 (2019)

    Article  CAS  Google Scholar 

  12. Y. Zhang, H. Chen, D. Mao, Processing, structure, and electrical properties of MnO2-doped Pb(Yb1/2Nb1/2)(0.10)(Zr0.47Ti0.53)(0.90)O3 ceramics. Ceram. Int. 39, S159–S163 (2013)

    Article  CAS  Google Scholar 

  13. Z. Zhuo, Z. Ling, Y. Liu, Phase composition and piezoelectric properties of Pb(Sb1/2Nb1/2)–PbTiO3–PbZrO3 ceramics. J. Mater. Sci-Mater. Electron. 29, 9524–9530 (2018)

    Article  CAS  Google Scholar 

  14. M.A.D.L. Rubia, R.E. Alonso, J.D. Frutos, A.R. López-Garcia, Phase transitions in PbTixHf1xO3 determined by thermal analysis and impedance spectroscopy. IEEE. Tultrason. Ferr. 98, 793–799 (2009)

    Google Scholar 

  15. G. Fantozzi, H. Idrissi, C. Favotto, M. Roubin, Lead hafnate titanate (PHT) ceramics: processing and properties. J. Eur. Ceram. Soc. 20, 1671–1676 (2000)

    Article  CAS  Google Scholar 

  16. D. Wang, M. Cao, S. Zhang, J.L. Jones, Investigation of ternary system PbHfO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J. Am. Ceram. Soc. 95, 3220–3228 (2012)

    Article  CAS  Google Scholar 

  17. Y. Yan, Z. Li, Y. Xia, M. Zhao, M. Zhang, D. Zhang, Ultra-high piezoelectric and dielectric properties of low-temperature sintered lead hafnium titanate-lead niobium nickelate ceramics. Ceram. Int. 46, 5448–5453 (2020)

    Article  Google Scholar 

  18. N. Luo, S. Zhang, Q. Li, C. Xu, Z. Yang, Q. Yan, Y. Zhang, T.R. Shrout, New Pb(Mg1/3Nb2/3)O3–Pb(In1/2Nb1/2)O3–PbZrO3–PbTiO3 quaternary ceramics: morphotropic phase boundary design and electrical properties. ACS. Appl. Mater. Inter. 8, 15506–15517 (2016)

    Article  CAS  Google Scholar 

  19. Y. Yan, Z. Li, M. Zhang, P. Sun, Y. Xu, Y. Feng, Effect of Fe substitution on the piezoelectric, dielectric and ferroelectric properties of PNZST ceramics. Ceram. Int. 42, 18352–18356 (2016)

    Article  CAS  Google Scholar 

  20. G. Cilaveni, K.V.A. Kumar, S.S.K. Raavi, C. Subrahmanyam, S. Asthana, Control over relaxor, piezo-photocatalytic and energy storage properties in Na0.5Bi0.5TiO3 via processing methodologies. J. Alloy. Compd. 798, 540–552 (2019)

    Article  CAS  Google Scholar 

  21. M. Makaremi, M.S. Jhon, M.S. Mauter, L.T. Biegler, Surface wetting study via pseudocontinuum modeling. J. Phys. Chem. C. 120, 11528–11534 (2016)

    Article  CAS  Google Scholar 

  22. C. Bedoya, C.H. Muller, A. Kowalski, E. Nigrelli, Investigation of the morphotropic region in the Sr-doped lead Hafnate-Titanate solid solution. J. Mater. Sci. Mater. Electron. 12, 543–550 (2001)

    Article  CAS  Google Scholar 

  23. B. Deng, Q. Wei, C. He, Z. Wang, X. Yang, X. Long, Effect of Pb(Mn1/3Sb2/3)O3 addition on the electrical properties of BiScO3-PbTiO3 piezoelectric ceramics. J. Alloy. Comp. 790, 397–404 (2019)

    Article  CAS  Google Scholar 

  24. D. Wang, M. Cao, S. Zhang, Investigation of ternary system PbHfO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J. Am. Ceram. Soc. 95, 3220–3228 (2012)

    Article  CAS  Google Scholar 

  25. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Math. 30, 1705171–1705179 (2018)

    Article  Google Scholar 

  26. R. Zhu, W. Ji, B. Fang, D. Wu, Z. Chen, J. Ding, X. Zhao, H. Luo, Ferroelectric phase transition and electrical conduction mechanisms in high Curie-temperature PMN-PHT piezoelectric ceramics. Ceram. Int. 43, 6417–6424 (2017)

    Article  CAS  Google Scholar 

  27. D. Pang, X. Long, H. Tailor, A lead-reduced ferroelectric solid solution with high curie temperature: BiScO3–Pb(Zn1/3Nb2/3)O3–PbTiO3. Ceram. Int. 40, 12953–12959 (2014)

    Article  CAS  Google Scholar 

  28. J. Zheng, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Synthesis and characterization of Pb(Yb1/2Nb1/2)O3-based high-Curie temperature piezoelectric ceramics. Eur. Phys. J. Appl. Phys. 66, 30101 (2014)

    Article  Google Scholar 

  29. F. Gao, H. Rongzi, L. Jiaji, L. Zhen, C. Lihong, T. Changsheng, Phase structure and piezoelectric properties of high Curie temperature BiYbO3–PbTiO3–BaTiO3 ceramics. J. Alloys. Compd. 475, 619–623 (2009)

    Article  Google Scholar 

  30. D. Damjanovic, Commments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE T. Ultrason. Ferr. 56, 1574–1585 (2009)

    Article  Google Scholar 

  31. H. Fu, R.E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000)

    Article  CAS  Google Scholar 

  32. Y. Yan, Y. Xu, Y. Feng, Effect of Mn doping on the piezoelectric properties of 0.82Pb(Zr1/2Ti1/2)O3–0.03Pb(Mn1/3Sb2/3)O3–0.15Pb(Zn1/3Nb2/3)O3 ferroelectric ceramics. Ceram. Int. 40, 5897–5903 (2014)

    Article  CAS  Google Scholar 

  33. Y. Yan, Z. Liu, Z. Li, M. Zhang, D. Zhang, Y. Feng, Improving piezoelectric properties of Pb(Ni, Nb)O3–Pb(Hf, Ti)O3 ceramics by LiF addition. Ceram. Int. 44, 5790–5793 (2018)

    Article  CAS  Google Scholar 

  34. F. Barzegar, D. Damjanovic, N. Setter, The effect of boundary conditions and sample aspect ratio on apparent piezoelectric coefficient determined by direct quasistatic method. IEEE T. Ultrason. Ferr. 51, 262–270 (2004)

    Google Scholar 

  35. E. Hou, Y. Yan, M. Zhang, D. Zhang, Z. Li, Morphotropic region and piezoelectric properties of xPb(In1/2Nb1/2)O3-(1–x)Pb(Hf1−yTiy)O3 ceramics. Ceram. Int. 17, 27394–27400 (2020)

    Article  Google Scholar 

  36. A. Sehirlioglu, A. Sayir, F. Dynys, High temperature properties of BiScO3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 106, 014102 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mo Zhao or Li Jin.

Ethics declarations

Conflict of interest

There are no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Jin, L., Chen, W. et al. Excellent piezoelectric property and thermal stability of Pb(Sc, Nb)O3-Pb(Hf, Ti)O3ceramic. J Mater Sci: Mater Electron 32, 14654–14664 (2021). https://doi.org/10.1007/s10854-021-06023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06023-0

Navigation