Skip to main content
Log in

Piezoelectric enhancement of 0.6Pb(Zr,Ti)O3–0.4Pb(Ni1/3Nb2/3)O3 ceramics with artificial MPB engineering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Piezoelectric materials are widely used in the direction of sensors. PZT-based ceramics are very suitable for precision sensors. However, due to the low Curie temperature, the application temperature range of the material is relatively narrow. Here we show a high-performance material 0.6PZT–0.4PNN. In this case, a morphotropic phase boundary (MPB) region was artificially designed in the 0.6Pb(ZrxTi1−x)O3–0.4Pb(Ni1/3Nb2/3)O3 (x = 0.35–0.41) ceramics to develop high-performance piezoelectric compositions which could cofire with low-cost Ag/Pd inner electrode by 0.2wt% Li2CO3 addition. The ceramic composition at x = 0.39 near MPB possess exceptional properties with high piezoelectric coefficient d33 ∼ 611 pC/N, planar electromechanical coupling coefficient kp ∼ 53.5%, low mechanical quality factor Qm ∼ 64.5 piezoelectric strain of 0.17%, and suitable Curie temperature Tc ∼ 191 °C, respectively. The fact that d33 was detected close to Tc, and no noticeable change below 6.6% in cycling stability was observed at 20 kV/cm means a robust temperature-independence and fatigue reliability of the piezoelectric ceramics. Thus, this research provides a novel high-piezoelectricity configuration with elemental regulation, comparable to the commercial PZTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. L. Bian, X. Qi, K. Li et al., High-performance [001] c‐textured PNN‐PZT relaxor ferroelectric ceramics for electromechanical coupling devices. Adv. Funct. Mater. 30(25), 2001846 (2020)

    CAS  Google Scholar 

  2. X. Niu, W. Jia, S. Qian et al., High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 7(1), 979–985 (2018)

    Google Scholar 

  3. B.S. Kim, J.H. Ji, J.H. Koh, Improved strain and transduction values of low-temperature sintered CuO-doped PZT-PZNN soft piezoelectric materials for energy harvester applications. Ceram. Int. 47(5), 6683–6690 (2021)

    CAS  Google Scholar 

  4. W. Gu, B. Zhao, B. Yang et al., Achieving superior electrical properties of PZT-PNN piezoelectric ceramics through low-temperature sintering with PbO-CuO eutectic additives. J. Eur. Ceram. Soc. 42(9), 3831–3840 (2022)

    CAS  Google Scholar 

  5. S. Yang, J. Li, Y. Liu et al., Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nat. Commun. 12(1), 1414 (2021)

    CAS  Google Scholar 

  6. X. Gao, J. Wu, Y. Yu et al., Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv. Funct. Mater. 28(30), 1706895 (2018)

    Google Scholar 

  7. F. Fan, W. Tang, Z. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016)

    CAS  Google Scholar 

  8. R. Gao, X. Chu, Y. Huan et al., A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker. Smart Mater. Struct. 23(10), 105018 (2014)

    Google Scholar 

  9. B. Gao, Z. Yao, D. Lai et al., Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region. J. Alloys Compd. 836, 155474 (2020)

    CAS  Google Scholar 

  10. H. Zhu, D. Zheng, X. Wang et al., Effects of Ta2O5 addition on relaxation behavior and electric properties of PMS-PNN-PZT ceramics. J. Mater. Sci.: Mater. Electron. 29(19), 16864–16871 (2018)

    CAS  Google Scholar 

  11. M. Khacheba, N. Abdessalem, A. Hamdi et al., Effect of acceptor and donor dopants (Na, Y) on the microstructure and dielectric characteristics of high Curie point PZT-modified ceramics. J. Mater. Sci.: Mater. Electron. 31(1), 361–372 (2020)

    CAS  Google Scholar 

  12. S.R. Shannigrahi, F.E.H. Tay, K. Yao et al., Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol–gel grown PZT ceramics. J. Eur. Ceram. Soc. 24(1), 163–170 (2004)

    CAS  Google Scholar 

  13. N. Luo, Q. Li, Z. Xia, Effect of Pb(Fe1/2Nb1/2)O3 modification on dielectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–PbZr0.52Ti0.48O3 ceramics. Mater. Res. Bull. 46(9), 1333–1339 (2011)

    CAS  Google Scholar 

  14. Z. Lin, Z. Zhu, Z. Yao et al., Piezoelectric response and cycling fatigue resistance of low-temperature sintered PZT-based ceramics. Materials 16(4), 1679 (2023)

    CAS  Google Scholar 

  15. Z. Du, C. Zhao, H.C. Thong et al., Effect of MnCO3 on the electrical properties of PZT-based piezoceramics sintered at low temperature. J. Alloys Compd. 801, 27–32 (2019)

    CAS  Google Scholar 

  16. J. Luo, J. Qiu, K. Zhu et al., Effects of the calcining temperature on the piezoelectric and dielectric properties of 0.55PNN–0.45PZT ceramics. Ferroelectrics 425(1), 90–97 (2011)

    CAS  Google Scholar 

  17. H. Wang, F. Zhang, Y. Chen et al., Giant piezoelectric coefficient of PNN-PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB. Ceram. Int. 47(9), 12284–12291 (2021)

    CAS  Google Scholar 

  18. S.H. Lee, S.H. Jun, H.E. Kim et al., Fabrication of porous PZT-PZN piezoelectric ceramics with high hydrostatic figure of merits using camphene-based freeze casting. J. Am. Ceram. Soc. 90(9), 2807–2813 (2007)

    CAS  Google Scholar 

  19. S. Lee, S. Lee, C. Yoon et al., Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics. J. Electro Ceram. 18, 311–315 (2007)

    CAS  Google Scholar 

  20. D. Wang, Q. Zhao, M. Cao et al., Dielectric, piezoelectric, and ferroelectric properties of Al2O3 and MnO2 modified PbSnO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys. Status Solidi (A) 210(7), 1363–1368 (2013)

    CAS  Google Scholar 

  21. Z. Zhang, J. Xu, L. Yang et al., Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer. Sens. Actuators A-Physical. 283, 273–281 (2018)

    CAS  Google Scholar 

  22. H. Ying, G. Ding, J. Zhao et al., Properties of PSN-PZT piezoelectric ceramic powder prepared by fast solid-phase reaction method. Mater. Today Commun. 35, 106086 (2023)

    CAS  Google Scholar 

  23. J. Ye, G. Ding, X. Wu et al., Development and performance research of PSN-PZT piezoelectric ceramics based on road vibration energy harvesting technology. Mater. Today Commun. 34, 105135 (2023)

    CAS  Google Scholar 

  24. Z. Zhu, B. Li, G. Li et al., Microstructure and piezoelectric properties of PMS-PZT ceramics. Mater. Sci. Engineering: B 117(2), 216–220 (2005)

    Google Scholar 

  25. Z. Zhu, N. Zheng, G. Li et al., Dielectric and electrical conductivity properties of PMS-PZT ceramics. J. Am. Ceram. Soc. 89(2), 717–719 (2006)

    CAS  Google Scholar 

  26. M.S. Yoon, H.M. Jang, Relaxor-normal ferroelectric transition in tetragonal-rich Field of Pb(Ni1/3Pb2/3)O3–PbTiO3–PbZrO3 system. J. Appl. Phys. 77(8), 3991–4001 (1995)

    CAS  Google Scholar 

  27. H. Chen, J. Xing, J. Xi et al., Origin of high piezoelectricity in low-temperature sintering PZT-based relaxor ferroelectric ceramics. J. Alloys Compd. 860, 157930 (2021)

    CAS  Google Scholar 

  28. Y. Yue, Q. Zhang, R. Nie et al., Influence of sintering temperature on phase structure and electrical properties of 0.55Pb(Ni1/3Nb2/3)O3–0.45Pb(Zr0.3Ti0.7)O3 ceramics. Mater. Res. Bull. 92, 123–128 (2017)

    CAS  Google Scholar 

  29. R. Cao, G. Li, J. Zeng et al., The piezoelectric and dielectric properties of 0.3Pb (Ni1/3Nb2/3) O3–xPbTiO3–(0.7 − x)PbZrO3 ferroelectric ceramics near the morphotropic phase boundary. J. Am. Ceram. Soc. 93(3), 737–741 (2010)

    CAS  Google Scholar 

  30. G. Robert, D. Damjanovic, N. Setter, Temperature dependence of piezoelectric properties for relaxor-ferroelectric solid solutions undergoing a rhombohedral to tetragonal phase transition. Ferroelectrics. 224(1), 97–104 (1999)

    Google Scholar 

  31. S. Chandarak, M. Unruan, A. Prasatkhetragarn et al., Structural investigation of PZT-PNN and PZT-PZN probed by synchrotron X-ray absorption spectroscopy. Ferroelectrics 455, 117–122 (2013)

    CAS  Google Scholar 

  32. C.-H. Nam, H.-Y. Park, Low-temperature sintering and piezoelectric properties of 0.65Pb(Zr1 – xTix)O3–0.35Pb(Ni0.33Nb0.67)O3 ceramics. J. Am. Ceram. Soc. 94, 3442–3448 (2011)

    CAS  Google Scholar 

  33. T. Pu, H. Chen, J. Xing et al., High piezoelectricity of low-temperature sintered Li2CO3-added PNN-PZT relaxor ferroelectrics. J. Mater. Sci.: Mater. Electron. 33(8), 4819–4830 (2022)

    CAS  Google Scholar 

  34. J. Zhang, Y. Zhang, Z. Yan et al., Fabrication and performance of PNN-PZT piezoelectric ceramics obtained by low-temperature sintering. Sci. Eng. Compos. Mater. 27, 359–365 (2020)

    CAS  Google Scholar 

  35. A.C. Caballero, E. Nieto, P. Duran et al., Ceramic-electrode interaction in PZT and PNN–PZT multilayer piezoelectric ceramics with Ag/Pd 70/30 inner electrode. J. Mater. Sci. 32, 3257–3262 (1997)

    CAS  Google Scholar 

  36. M. Ghasemifard, S.M. Hosseini, A.K. Zak et al., Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Phys. E: Low-Dimen. Syst. Nanostruct. 41(3), 418–422 (2009)

    CAS  Google Scholar 

  37. S. Wang, L. Li, X. Wang, Low-temperature firing and microwave dielectric properties of MgNb2 – xVx/2O6–1.25x ceramics. Ceram. Int. 48(1), 199–204 (2022)

    CAS  Google Scholar 

  38. C. Vakifahmetoglu, L. Karacasulu, Cold sintering of ceramics and glasses: a review. Curr. Opin. Solid State Mater. Sci. 24(1), 100807 (2020)

    CAS  Google Scholar 

  39. N.J. Donnelly, T.R. Shrout, C.A. Randall, The role of Li2CO3 and PbO in the low-temperature sintering of Sr, K, Nb (SKN)‐doped PZT. J. Am. Ceram. Soc. 92(6), 1203–1207 (2009)

    CAS  Google Scholar 

  40. C. Huang, K. Cai, Y. Wang et al., Revealing the real high temperature performance and depolarization characteristics of piezoelectric ceramics by combined in situ techniques. J. Mater. Chem. C 6(6), 1433–1444 (2018)

    CAS  Google Scholar 

  41. S. Yasuyoshi, T. Hisaaki, T. Toshihiko et al., Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)

    Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of China (51872213), Sanya Science and Education Innovation Park of Wuhan University of Technology (2021KF0014), Guangdong Basic and Applied Basic Research Foundation (2022B1515120041 and 2022A1515010073).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PS, ZZ and ZY. Supervision, project administration, funding acquisition were performed by ZY, MC, HH, and HL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhonghua Yao.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Zhu, Z., Yao, Z. et al. Piezoelectric enhancement of 0.6Pb(Zr,Ti)O3–0.4Pb(Ni1/3Nb2/3)O3 ceramics with artificial MPB engineering. J Mater Sci: Mater Electron 35, 58 (2024). https://doi.org/10.1007/s10854-023-11778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11778-9

Navigation