Skip to main content
Log in

Structural studies and physical properties of Gd2O3-doped borate glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gd2O3-doped glasses in the B2O3–CaO–Na2O–SrO–P2O5 system were synthesized via melt annealing route and characterized through physical properties. With the replacement of CaO by Gd2O3, the measured values of the density (ds), Gd3+ ions concentration (N), packing density (Pd), oxygen packing density (OPD), Vickers’s hardness (HV), and field strength (F) of the synthesized samples increased, whereas the molar volume (Vm), free volume (Vf), polaron radius (rp), average boron–boron distance (dB–B), and inter-nuclear distance (ri) decreased. The glassy nature of the synthesized samples is confirmed by the X-ray diffraction patterns. The change in the coordination number of boron and the different B–O vibrational bands with the incorporation of gadolinium ions in the investigated glass samples were examined by Raman and FTIR spectroscopy, which supported the presence of BO3, BO4, and GdO4 groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code availability

Not applicable.

References

  1. E.I. Kamitsos, G.D. Chryssikos, Borate glass structure by Raman and infrared spectroscopies. J. Mol. Struct. 247, 1–16 (1991)

    CAS  Google Scholar 

  2. M. Farouk, A. Samir, F. Metawe, M. Elokr, Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions. J. Non. Cryst. Solids 371, 14–21 (2013)

    Google Scholar 

  3. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5(83), 67583–67609 (2015)

    CAS  Google Scholar 

  4. V. Venkatramu, D. Navarro-Urrios, P. Babu, C.K. Jayasankar, V. Lavin, Fluorescence line narrowing spectral studies of Eu3+–doped lead borate glass. J. Non. Cryst. Solids 351(10–11), 929–935 (2005)

    CAS  Google Scholar 

  5. B. Sumalatha, I. Omkaram, T.R. Rao, C.L. Raju, The structural, optical and magnetic parameter of manganese doped strontium zinc borate glasses. Phys. B Condens. Matter 411, 99–105 (2013)

    CAS  Google Scholar 

  6. A.M. Abdelghany, M.A. Ouis, M.A. Azooz, H.A. ElBatal, G.T. El-Bassyouni, Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives. Spectrochim. Acta. Part A. 152, 126–133 (2016)

    CAS  Google Scholar 

  7. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51(5), 2199–2242 (2016)

    CAS  Google Scholar 

  8. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodium fluoroborate glasses. J. Non. Cryst. Solids 499, 75–85 (2018)

    CAS  Google Scholar 

  9. S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K. NagaKrishnakanth, S.V. Rao, Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses. Opt. Mater. (Amst) 83, 34–42 (2018)

    CAS  Google Scholar 

  10. K.H. Karlsson, K. Fröberg, Structural units in silicate glasses. Chem. Geol. 62(1–2), 1–5 (1987)

    CAS  Google Scholar 

  11. P. Naresh et al., Modifier role of ZnO on the structural and transport properties of lithium boro tellurite glasses. J. Non. Cryst. Solids 514, 35–45 (2019)

    CAS  Google Scholar 

  12. G. Sangeetha, K.C. Sekhar, A. Hameed, G. Ramadevudu, M.N. Chary, M. Shareefuddin, Influence of CaO on the structure of zinc sodium tetra borate glasses containing Cu2+ ions. J. Non. Cryst. Solids 563, 120784 (2021)

    CAS  Google Scholar 

  13. G. El-Damrawi, K. Abd-El-Nour, R.M. Ramadan, Structural and dielectric studies on Na2O–PbO–SiO2 glasses. SILICON 11(1), 495–500 (2019)

    CAS  Google Scholar 

  14. Y. Zhou, H. Li, K. Lin, W. Zhai, W. Gu, J. Chang, Effect of heat treatment on the properties of SiO2–CaO–MgO–P2O5 bioactive glasses. J. Mater. Sci. Mater. Med. 23(9), 2101–2108 (2012)

    CAS  Google Scholar 

  15. W.C. Lepry, S.N. Nazhat, The anomaly in bioactive sol–gel borate glasses. Mater. Adv. 1(5), 1371–1381 (2020)

    CAS  Google Scholar 

  16. M.S. Gaafar et al., Role of neodymium on some acoustic and physical properties of Bi2O3–B2O3–SrO glasses. J. Mater. Res. Technol. 9(4), 7252–7261 (2020)

    CAS  Google Scholar 

  17. U. Patel et al., In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regeneration. J. Tissue Eng. Regen. Med. 13(3), 396–405 (2019)

    CAS  Google Scholar 

  18. R. Divina, K.A. Naseer, K. Marimuthu, Y.S.M. Alajerami, M.S. Al-Buriahi, Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J. Mater. Sci. Mater. Electron (2020). https://doi.org/10.1007/s10854-020-04662-3

    Article  Google Scholar 

  19. H. Tripathi, C. Rath, A.S. Kumar, P.P. Manna, S.P. Singh, Structural, physicomechanical and in-vitro bioactivity studies on SiO2–CaO–P2O5–SrO–Al2O3 bioactive glasses. Mater. Sci. Eng. 94, 279–290 (2019)

    CAS  Google Scholar 

  20. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40(9), 14477–14481 (2014)

    CAS  Google Scholar 

  21. H.A. ElBatal et al., In vitro bioactivity behavior of some borophosphate glasses containing dopant of ZnO, CuO or SrO together with their glass-ceramic derivatives and their antimicrobial activity. Silicon 11(1), 197–208 (2019)

    CAS  Google Scholar 

  22. B. Samanta, D. Dutta, S. Ghosh, Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses. Phys. B Condens. Matter 515, 82–88 (2017)

    CAS  Google Scholar 

  23. D. Maniu, T. Iliescu, I. Ardelean, I. Bratu, C. Dem, Studies of Borate Vanadate Glasses Using Raman and IR Spectroscopy (Stud. Univ. Babes-Bolyai Phys, Romania, 2001), pp. 366–371

    Google Scholar 

  24. P. Kaur, S. Kaur, G.P. Singh, D.P. Singh, Sm3+ doped lithium aluminoborate glasses for orange-colored visible laser host material. Solid State Commun. 171, 22–25 (2013)

    CAS  Google Scholar 

  25. T. Rouxel, Elastic properties of glasses: a multiscale approach. Comptes Rendus Mec. 334(12), 743–753 (2006)

    CAS  Google Scholar 

  26. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J. Non. Cryst. Solids 354(52–54), 5573–5579 (2008)

    CAS  Google Scholar 

  27. G.P. Singh, S. Kaur, P. Kaur, D.P. Singh, Modification in structural and optical properties of ZnO, CeO2 doped Al2O3–PbO–B2O3 glasses. Phys. B 407(8), 1250–1255 (2012)

    CAS  Google Scholar 

  28. M.H.A. Mhareb et al., Impact of Nd3+ ions on physical and optical properties of lithium magnesium borate glass. Opt. Mater. (Amst) 37, 391–397 (2014)

    CAS  Google Scholar 

  29. V. Bhatia et al., Mixed transition and rare-earth ion-doped borate glass: structural, optical and thermoluminescence study. J. Mater. Sci. Mater. Electron. 30(1), 677–686 (2019)

    CAS  Google Scholar 

  30. S. Karki, C.R. Kesavulu, H.J. Kim, J. Kaewkhao, N. Chanthima, Y. Ruangtaweep, Physical, optical and luminescence properties of B2O3–SiO2–Y2O3–CaO glasses with Sm3+ ions for visible laser applications. J. Lumin. 197, 76–82 (2018)

    CAS  Google Scholar 

  31. H. Chandler, Introduction to Hardness Testing (Hardness testing, USA, 1999), pp. 1–13

    Google Scholar 

  32. B. Schrader (ed.), Infrared and Raman Spectroscopy (VCH Publ. Inc., New York, 1995), p. 136

    Google Scholar 

  33. A.M. Abdelghany, Novel method for early investigation of bioactivity in different borate bio-glasses. Spectrochim. Acta. Part A. 100, 120–126 (2013)

    CAS  Google Scholar 

  34. S.A. Dalhatu, R. Hussin, K. Deraman, Structural and luminescence properties of Eu3+–doped magnesium sulfide borate glass and crystal. Chinese J. Phys. 54(6), 877–882 (2016)

    CAS  Google Scholar 

  35. M. Karabulut, A. Popa, G. Borodi, R. Stefan, An FTIR and ESR study of iron–doped calcium borophosphate glass–ceramics. J. Mol. Struct. 1101, 170–175 (2015)

    CAS  Google Scholar 

  36. A.M. Abdelghany, The elusory role of low level doping transition metals in lead silicate glasses. Silicon 2(3), 179–184 (2010)

    CAS  Google Scholar 

  37. B. Ashok, K.C. Sekhar, B.S. Chary et al., Physical and structural study of Al2O3–NaBr–B2O3–CuO glasses. Indian J Phys (2021). https://doi.org/10.1007/s12648-021-02048-7

    Article  Google Scholar 

  38. B.N. Meera, J. Ramakrishna, Raman spectral studies of borate glasses. J. Non. Cryst. Solids 159(1–2), 1–21 (1993)

    CAS  Google Scholar 

  39. A.A. Osipov, L.M. Osipova, Raman scattering study of barium borate glasses and melts. J. Phys. Chem. Solids 74(7), 971–978 (2013)

    CAS  Google Scholar 

  40. A.A. Osipov, L.M. Osipova, B. Hruška, A.A. Osipov, M. Liška, FTIR and Raman spectroscopy studies of ZnO–doped BaO⋅ 2B2O3 glass matrix. Vib. Spectrosc. 103, 102921 (2019)

    CAS  Google Scholar 

  41. M.R. Ahmed, B. Ashok, S.K. Ahmmad, A. Hameed, M.N. Chary, M. Shareefuddin, Infrared and Raman spectroscopic studies of Mn2+ ions doped in strontium alumino borate glasses: describes the role of Al2O3. Spectrochim. Acta. Part A. 210, 308–314 (2019)

    CAS  Google Scholar 

  42. M.K. Halimah, W.M. Daud, H.A.A. Sidek, A.W. Zaidan, A.S. Zainal, Optical properties of ternary tellurite glasses. Mater. Sci. 28(1), 173–180 (2010)

    CAS  Google Scholar 

  43. S. Rada, E. Culea, M. Bosca, M. Culea, P. Pascuta, M. Neumann, Effect of the introduction of gadolinium ions in Boro–tellurite glasses. J. Optoelectron. Adv. Mater. 10(9), 2316–2318 (2008)

    CAS  Google Scholar 

  44. Y.B. Saddeek, Elastic properties of Gd3+–doped tellurovanadate glasses using pulse-echo technique. Mater. Chem. Phys. 91(1), 146–153 (2005)

    CAS  Google Scholar 

  45. Y. Al-Hadeethi, M.I. Sayyed, Effect of Gd2O3 on the radiation shielding characteristics of Sb2O3–PbO–B2O3–Gd2O3 glass system. Ceram. Int. 46(9), 13768–13773 (2020)

    CAS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MAM: conceptualization, methodology, validation, investigation, writing—original draft, writing—review & editing, and visualization. GED: supervision, writing—review & editing. AMA: methodology and formal analysis. MIA: supervision.

Corresponding author

Correspondence to M. A. Madshal.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Table 4 De-convolution parameters of FTIR spectra of all prepared glass samples, where B.C is the band center (cm−1), R.A. is the relative area (%), and A is the area of the component bands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madshal, M.A., El-Damrawi, G., Abdelghany, A.M. et al. Structural studies and physical properties of Gd2O3-doped borate glass. J Mater Sci: Mater Electron 32, 14642–14653 (2021). https://doi.org/10.1007/s10854-021-06022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06022-1

Navigation