Skip to main content
Log in

Investigation of structural and electrochemical properties of Na2Mn2(SO4)3 cathode for sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrode materials with the benefits of high working voltage, low cost, and environmental benign are needed for the realization of sodium-ion batteries (NIBs). In this work, Na2Mn2(SO4)3 with alluaudite framework is synthesized via a low-temperature solid-state reaction route and investigated as the cathode material. The crystal structure investigations are carried out using x-ray diffraction and the results suggest the successful formation of the alluaudite phase. The Na2Mn2(SO4)3 material is prepared with cubical shape particles with large pores as confirmed using scanning electron microscopy. Microstructural studies of Na2Mn2(SO4)3 are investigated using transmission electron microscopy which reveal crystalline structure at high resolution. The successful formation of Na2Mn2(SO4)3 and chemical bonding of Na, Mn, S, and O are investigated using high-resolution x-ray photoelectron spectroscopy. Na2Mn2(SO4)3 cathode exhibits a discharge capacity of 64 mAh g−1 during 1st cycle which increases in subsequent cycles due to the activation process and stabilizes in 5th cycle with a value of 68 mAh g−1. Electrochemical impedance spectroscopy reveals a relatively better value of diffusion coefficient of 3.81 × 10–13 cm2 s−1 after cycling compared to 2.12 × 10–14 cm2 s−1 of pristine. Na2Mn2(SO4)3 has shown promising electrochemical results toward possible cathode materials for NIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Dunn, H. Kamath, J.-M. Tarascon, Science 334, 928 (2011)

    Article  CAS  Google Scholar 

  2. H.S. Hirsh, Y. Li, D.H. Tan, M. Zhang, E. Zhao, Y.S. Meng, Adv. Energy Mater. 10, 2001274 (2020)

    Article  CAS  Google Scholar 

  3. X. Luo, J. Wang, M. Dooner, J. Clarke, Appl. Energy 137, 511 (2015)

    Article  Google Scholar 

  4. W. Van Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries (Springer, Boston, 2002).

    Book  Google Scholar 

  5. M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, New York, 2009).

    Book  Google Scholar 

  6. M. Islam, M.G. Jeong, G. Ali et al., Chemsuschem 11, 2165 (2018)

    Article  CAS  Google Scholar 

  7. A. Manthiram, Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  8. P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 57, 102 (2018)

    Article  CAS  Google Scholar 

  9. B. Ellis, L. Nazar, Mater. Sci. 16, 168 (2012)

    CAS  Google Scholar 

  10. M. Sawicki, L.L. Shaw, RSC Adv. 5, 53129 (2015)

    Article  CAS  Google Scholar 

  11. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114, 11636 (2014)

    Article  CAS  Google Scholar 

  12. D.S. Bhange, G. Ali, J.-Y. Kim, K.Y. Chung, K.-W. Nam, J. Power Sources 366, 115 (2017)

    Article  CAS  Google Scholar 

  13. M. Islam, G. Ali, M.-G. Jeong et al., Nanoscale 11, 1065 (2019)

    Article  CAS  Google Scholar 

  14. T. Wang, D. Su, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Electrochem. Energy Rev. 1, 200 (2018)

    Article  CAS  Google Scholar 

  15. M. Chen, Q. Liu, S.W. Wang, E. Wang, X. Guo, S.L. Chou, Adv. Energy Mater. 9, 1803609 (2019)

    Article  Google Scholar 

  16. P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Adv. Energy Mater. 8, 1703055 (2018)

    Article  Google Scholar 

  17. B. Senthilkumar, C. Murugesan, L. Sharma, S. Lochab, P. Barpanda, Small Methods 3, 1800253 (2019)

    Article  CAS  Google Scholar 

  18. P. Barpanda, Isr. J. Chem. 55, 537 (2015)

    Article  CAS  Google Scholar 

  19. J. Ming, P. Barpanda, S. Nishimura, M. Okubo, A. Yamada, Electrochem. Commun. 51, 19 (2015)

    Article  CAS  Google Scholar 

  20. P. Barpanda, G. Oyama, S. Nishimura, S.-C. Chung, A. Yamada, Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  21. K. Sun, Y. Hu, X. Zhang et al., Electrochim. Acta 335, 135680 (2020)

    Article  CAS  Google Scholar 

  22. Q. Zhang, X. Zhang, W. He et al., J. Mater. Sci. Technol. 35, 2396 (2019)

    Article  Google Scholar 

  23. Z. Jian, L. Zhao, H. Pan et al., Electrochem. Commun. 14, 86 (2012)

    Article  CAS  Google Scholar 

  24. Z. Jian, W. Han, X. Lu et al., Adv. Energy Mater. 3, 156 (2013)

    Article  CAS  Google Scholar 

  25. A. Plewa, A. Kulka, D. Baster, J. Molenda, Solid State Ion. 335, 15 (2019)

    Article  CAS  Google Scholar 

  26. D. Dwibedi, P. Barpanda, MRS Adv. 3, 1209 (2018)

    Article  CAS  Google Scholar 

  27. D. Dwibedi, R.B. Araujo, S. Chakraborty et al., J. Mater. Chem. A 3, 18564 (2015)

    Article  CAS  Google Scholar 

  28. D. Dwibedi, R. Gond, A. Dayamani et al., Dalton Trans. 46, 55 (2017)

    Article  CAS  Google Scholar 

  29. D. Dwibedi, P. Barpanda, Mater. Today: Proc. 5, 23439 (2018)

    CAS  Google Scholar 

  30. D. Marinova, V. Kostov, R. Nikolova , R. Kukeva,  E. Zhecheva, M. Sendova-Vasileva, R. Stoyanova, J. Mater. Chem. A 3, 22287 (2015)

    Article  CAS  Google Scholar 

  31. G. Yang, W. Yan, J. Wang, H. Yang, CrystEngComm 16, 6907 (2014)

    Article  CAS  Google Scholar 

  32. N. Li, Y. Tian, J. Zhao et al., Appl. Catal. B 214, 126 (2017)

    Article  CAS  Google Scholar 

  33. Y. Wang, X. Ding, F. Wang, J. Li, S. Song, H. Zhang, Chem. Sci. 7, 4284 (2016)

    Article  CAS  Google Scholar 

  34. M. Wang, K. Chen, J. Liu, Q. He, G. Li, F. Li, Catalysts 8, 138 (2018)

    Article  Google Scholar 

  35. Y. Xue, H. Miao, S. Sun, Q. Wang, S. Li, Z. Liu, J. Power Sources 342, 192 (2017)

    Article  CAS  Google Scholar 

  36. P. Kaspar, D. Sobola, R. Dallaev et al., Appl. Surf. Sci. 493, 673 (2019)

    Article  CAS  Google Scholar 

  37. M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, RSC Adv. 5, 75953 (2015)

    Article  CAS  Google Scholar 

  38. C. Andrello, L. Favergeon, L. Desgranges et al., J. Nucl. Mater. (2020). https://doi.org/10.1016/j.jnucmat.2020.152646

    Article  Google Scholar 

  39. D. Briggs, Auger X-Ray Photoelectron. Spectrosc. 1, 151 (1990)

    Google Scholar 

  40. A. Goñi, A. Iturrondobeitia, I.G. de Muro, L. Lezama, T. Rojo, J. Power Sources 369, 95 (2017)

    Article  Google Scholar 

  41. G. Ali, J.H. Lee, S.H. Oh, B.W. Cho, K.-W. Nam, K.Y. Chung, ACS Appl. Mater. Interfaces 8, 6032 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Bushra Nawaz wants to acknowledge Composite Materials and Smart Structures Laboratory, UET Taxila for providing facilities in this research.

Author information

Authors and Affiliations

Authors

Contributions

BN conceived and proposed the present idea of this research work. BN and MOU synthesized the material and performed experiments. Both the authors contributed to writing this manuscript.

Corresponding author

Correspondence to Bushra Nawaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, B., Ullah, M.O. Investigation of structural and electrochemical properties of Na2Mn2(SO4)3 cathode for sodium-ion batteries. J Mater Sci: Mater Electron 32, 14509–14518 (2021). https://doi.org/10.1007/s10854-021-06008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06008-z

Navigation