Skip to main content
Log in

A study of fabrication and characterization of NaxMnO2 as a cathode material for sodium-ion battery

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The necessity for electrochemical energy storage technologies is promptly boosted due to the spread of renewable energy sources and the promising market for net-scale battery applications. Sodium-ion batteries are a novel battery class due to Na materials’ abundance and low cost compared to lithium. In the present study, NaxMnO2 is being prepared by solid-state method and materials were characterized using various techniques including X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV–VIS, and X-ray photoelectron spectroscopy (XPS). The Rietveld refinement performed on the respective XRD pattern led on a hexagonal structure with space group P63/mmc. Raman Spectroscopy observes to obtain information about the structural fingerprint of the prepared powders by identifying the vibrational mode of different calcination temperatures. X-ray photoelectron spectroscopy analysis was carried out to investigate the Mn valence of NaxMnO2. The Surface morphology was characterized by SEM and electrochemical charge–discharge cycling, which also performed from 2.0 to 4.2 V versus Na+/Na for C/10 where initial discharge capacity 102 mAh/g and 90.2% capacity retention after 20 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  2. S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012). https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  3. H. Li, X. Chen, T. Jin, W. Bao, Z. Zhang, L. Jiao, Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater. 16, 383–390 (2019). https://doi.org/10.1016/j.ensm.2018.06.013

    Article  Google Scholar 

  4. D.D. Yuan, Y.X. Wang, Y.L. Cao, X.P. Ai, H.X. Yang, Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 7(16), 8585–8591 (2015). https://doi.org/10.1021/acsami.5b00594

    Article  CAS  Google Scholar 

  5. L. Lu, Editorial. Funct. Mater. Lett. (2013). https://doi.org/10.1142/S1793604713010017

    Article  Google Scholar 

  6. D. Yuan et al., P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim. Acta 116, 300–305 (2014). https://doi.org/10.1016/j.electacta.2013.10.211

    Article  CAS  Google Scholar 

  7. P. Vassilaras, A.J. Toumar, G. Ceder, Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 38, 79–81 (2014). https://doi.org/10.1016/j.elecom.2013.11.015

    Article  CAS  Google Scholar 

  8. C. Fouassier, C. Delmas, P. Hagenmuller, AxMO2 (A = Na, K; M = Cr, Mn, Co) (x–i) (Pergamon Press, Inc., Oxford, 1975)

    Google Scholar 

  9. R. Stoyanova et al., Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J. Solid State Chem. 183(6), 1372–1379 (2010). https://doi.org/10.1016/j.jssc.2010.04.024

    Article  CAS  Google Scholar 

  10. A. Mendiboure, C. Delmas, P. Hagenmuller, Electrochemical Intercalation and Deintercalation of NaxMnOz Bronzes (1985)

  11. L. Bordet-Le Guenne, P. Deniard, P. Biensan, C. Siret, R. Brec, Structural study of two layered phases in the Na(x)Mn(y)O2 system. Electrochemical behavior of their lithium substituted derivatives. J. Mater. Chem. 10(9), 2201–2206 (2000). https://doi.org/10.1039/b004598p

    Article  CAS  Google Scholar 

  12. D. Su, C. Wang, H.J. Ahn, G. Wang, Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem. Eur. J. 19(33), 10884–10889 (2013). https://doi.org/10.1002/chem.201301563

    Article  CAS  Google Scholar 

  13. Q. Wang, W. Yang, F. Kang, B. Li, Na2Mn3+0.3Mn4+2.7O6.85: a cathode with simultaneous cationic and anionic redox in Na-ion battery. Energy Storage Mater. 14, 361–366 (2018). https://doi.org/10.1016/j.ensm.2018.06.003

    Article  Google Scholar 

  14. C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+C 99, 81 (1980)

    Article  CAS  Google Scholar 

  15. J.-P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, Sur Quelques Nouvelles Phases de Formule Na, MnO, (xG1). J. Solid State Chem. 3, 1 (1971)

    Article  CAS  Google Scholar 

  16. K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, S. Komaba, Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull. 39(5), 416–422 (2014). https://doi.org/10.1557/mrs.2014.85

    Article  CAS  Google Scholar 

  17. X. Ma, H. Chen, G. Ceder, Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 158(12), A1307 (2011). https://doi.org/10.1149/2.035112jes

    Article  CAS  Google Scholar 

  18. Y. Cao et al., Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 23(28), 3155–3160 (2011). https://doi.org/10.1002/adma.201100904

    Article  CAS  Google Scholar 

  19. D. Sehrawat et al., Alkali metal-modified P2 NaxMnO2: crystal structure and application in sodium-ion batteries. Inorg. Chem. 59(17), 12143–12155 (2020). https://doi.org/10.1021/acs.inorgchem.0c01078

    Article  CAS  Google Scholar 

  20. E. Talaie, S.Y. Kim, N. Chen, L.F. Nazar, Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2. Chem. Mater. 29(16), 6684–6697 (2017). https://doi.org/10.1021/acs.chemmater.7b01146

    Article  CAS  Google Scholar 

  21. W. Kang et al., Copper substituted P2-type Na0.67CuxMn1-xO2: a stable high-power sodium-ion battery cathode. J. Mater. Chem. A Mater. 3(45), 22846–22852 (2015). https://doi.org/10.1039/c5ta06371j

    Article  CAS  Google Scholar 

  22. D. Buchholz et al., Toward na-ion batteries: synthesis and characterization of a novel high capacity Na ion intercalation material. Chem. Mater. 25(2), 142–148 (2013). https://doi.org/10.1021/cm3029615

    Article  CAS  Google Scholar 

  23. Z. Mahmud, F. Munshe, A. Haque, K. Ghosh, Investigation structural, optical, and electrochemical properties of P2 type NaxMnO2-δ for high-performance Na-ion cathode materials. Energies (2023)

  24. M.A. Khan, D. Han, G. Lee, Y.I. Kim, Y.M. Kang, P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries. J. Alloys Compds. 771, 987–993 (2019). https://doi.org/10.1016/j.jallcom.2018.09.033

    Article  CAS  Google Scholar 

  25. J.F. Qu, W. Wang, Y. Chen, G. Li, X.G. Li, Raman spectra study on nonstoichiometric compound Nax Co O2. Phys. Rev. B Condens. Matter Mater. Phys. 73(9), 092518 (2006). https://doi.org/10.1103/PhysRevB.73.092518

    Article  CAS  Google Scholar 

  26. C. Delmas, A. Maazaz, C. Fouassier, J.-M. Rau, P. Hagenmuller, Influence de l’environnement de l’ion alcalin sur sa mobilite dans les structures a feuillets Ax(LxMI_x)O2. Mater. Res. Bull. 14, 329 (1979)

    Article  CAS  Google Scholar 

  27. J. Zhang et al., Na-Mn-O nanocrystals as a high capacity and long life anode material for Li-ion batteries. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201602092

    Article  Google Scholar 

  28. S.C. Manna, P. Sandineni, A. Choudhury, Low temperature hydrothermal synthesis of Na3Fe2(PO4)2F3 and its cathode electrochemistry in Na- and Li-ion batteries. J. Solid State Chem. (2021). https://doi.org/10.1016/j.jssc.2020.121922

    Article  Google Scholar 

  29. E. Hosono et al., High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J. Power Sources 217, 43–46 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially performed using facilities of the Air Force Research Laboratory (APRL).

Funding

This research receives no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptional and writing—original draft preparation: ZM; writing, reviewing, and editing of the manuscript: ZM, KG, AH, and SK; data analysis—ZM; XPS investigation: AH and SK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zia Uddin Mahmud.

Ethics declarations

Conflict of interest

There is no conflict between the authors of this project.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb). Rietveld refinement result and XPS survey scan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, Z.U., Karmakar, S., Haque, A. et al. A study of fabrication and characterization of NaxMnO2 as a cathode material for sodium-ion battery. MRS Advances 8, 828–834 (2023). https://doi.org/10.1557/s43580-023-00611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00611-4

Navigation