Skip to main content
Log in

Ag2CO3 nanoparticles decorated g-C3N4 as a high-efficiency catalyst for photocatalytic degradation of organic contaminants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Visible light-driven Ag2CO3/g-C3N4 nanocomposite photocatalysts with different weight contents of Ag2CO3 were reported by combining two thermal annealing and simple chemical deposition methods. Ag2CO3 nanoparticles with an average particle size of 8.9 nm were homogeneously anchored on the surface of g-C3N4 nanosheets. The structure of Ag2CO3/g-C3N4 nanocomposite photocatalysts was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscopy (TEM), and Ultraviolet–Visible absorption spectroscopy (UV–Vis). Under visible light irradiation, the photocatalytic activity of Ag2CO3/g-C3N4 nanocomposite photocatalysts was investigated using the degradation of methyl orange (MO) and methylene blue (MB). The Ag2CO3/g-C3N4 nanocomposite photocatalysts can effectively degrade MO and MB, and exhibit much higher photocatalytic activity than that of single catalyst Ag2CO3 or g-C3N4. The Ag2CO3/g-C3N4 nanocomposite photocatalysts with 60 wt% of Ag2CO3 (Ag2CO3/g-C3N4-6) presented the best photocatalytic performance. The photodegradation efficiency of the Ag2CO3/g-C3N4-6 nanocomposite is up to 93.9% in 180 min for MO and 62.8% in 240 min for MB under visible light irradiation. In addition, the pseudo-first-order kinetics data display that the rate constants of Ag2CO3/g-C3N4-6 nanocomposite are 0.01509 min−1 and 0.00397 min−1 for MO and MB, which are 7.0 and 3.0 times of g-C3N4, respectively. The excellent photocatalytic performance of Ag2CO3/g-C3N4 nanocomposite photocatalysts can be attributed to the decreased size of the Ag2CO3 nanoparticles, their uniform dispersion as well as the synergistic effect between the Ag2CO3 nanoparticles and g-C3N4 nanosheets, which broaden the range of visible light response and enhanced the separation of photogenerated charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Li, Q.Q. Shen, R.F. Guan, J.B. Xue, X.G. Liu, H.S. Jia, B.S. Xu, Y.C. Wu, AC@TiO2 yolk-shell heterostructure for synchronous photothermal-photocatalytic degradation of organic pollutants. J. Mater. Chem. C 8, 1025–1040 (2020)

    Article  CAS  Google Scholar 

  2. Y.Y. Li, Y. Si, B.X. Zhou, T. Huang, W.Q. Huang, W.Y. Hu, A.L. Pan, X.X. Fan, G.F. Huang, Interfacial charge modulation: carbon quantum dot implanted carbon nitride double-deck nanoframes for robust visible-light photocatalytic tetracycline degradation. Nanoscale 12, 3135–3145 (2020)

    Article  CAS  Google Scholar 

  3. C.Y. Su, Y.Z. Zhou, L.L. Zhang, X.H. Yu, S. Gao, X.J. Sun, C. Cheng, Q.Q. Liu, J. Yang, Enhanced n→π* electron transition of porous P-doped g-C3N4 nanosheets for improved photocatalytic H2 evolution performance. Ceram. Int. 46, 8444–8451 (2020)

    Article  CAS  Google Scholar 

  4. J.B. Xue, T. Ma, Q.Q. Shen, R.F. Guan, H.S. Jia, X.G. Liu, B.S. Xu, A novel synthesis method for Ag/g-C3N4 nanocomposite and mechanism of enhanced visible-light photocatalytic activity. J. Mater. Sci. 30, 15636–15645 (2019)

    CAS  Google Scholar 

  5. C.H. Dong, J. Lu, B.C. Qiu, B. Shen, M.Y. Xing, J.L. Zhang, Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl. Catal. B 222, 146–156 (2018)

    Article  CAS  Google Scholar 

  6. Y.N. Chen, G.Q. Zhu, M. Hojamberdiev, J.Z. Gao, R.L. Zhu, C.H. Wang, X.M. Wei, P. Liu, Three-dimensional Ag2O/Bi5O7I p–n heterojunction photocatalyst harnessing UV–Vis–NIR broad spectrum for photodegradation of organic pollutants. J. Hazard. Mater. 344, 42–54 (2018)

    Article  CAS  Google Scholar 

  7. W.K. Darkwah, B.B. Adormaa, M.K.C. Sandrine, H. Ao, Modification strategies for enhancing the visible light responsive photocatalytic activity of the BiPO4 nano-based composite photocatalysts. Catal. Sci. Technol. 9, 546–566 (2019)

    Article  CAS  Google Scholar 

  8. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sust. Energ. Rev. 81, 536–551 (2018)

    Article  CAS  Google Scholar 

  9. Q.Q. Shen, J.B. Xue, Y. Li, G.X. Gao, Q. Li, X.G. Liu, H.S. Jia, B.S. Xu, Y.C. Wu, S.J. Dillon, Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Appl. Catal. B 282, 119552 (2021)

    Article  CAS  Google Scholar 

  10. M.F.R. Samsudin, H. Ullah, R. Bashiri, N.M. Mohamed, S. Sufian, Y.H. Ng, Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water. ACS Sustain. Chem. Eng. 8, 9393–9403 (2020)

    Article  CAS  Google Scholar 

  11. M.F.R. Samsudin, N. Bacho, S. Sufian, Y.H. Ng, Photocatalytic degradation of phenol wastewater over Z-scheme g-C3N4/CNT/BiVO4 heterostructure photocatalyst under solar light irradiation. J. Mol. Liq. 277, 977–988 (2019)

    Article  CAS  Google Scholar 

  12. X.J. Wen, C.G. Niu, L. Zhang, C. Liang, G.M. Zeng, A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl. Catal. B 221, 701–714 (2018)

    Article  CAS  Google Scholar 

  13. C. Liu, J. Wang, S. Yang, X.Y. Li, X. Lin, Ag3PO4 nanocrystals and g-C3N4 quantum dots decorated Ag2WO4 nanorods: ternary nanoheterostructures for photocatalytic degradation of organic contaminants in water. RSC Adv. 9, 8065–8072 (2019)

    Article  CAS  Google Scholar 

  14. Y.Y. Bai, Y. Lu, J.K. Liu, An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite. J. Hazard. Mater. 307, 26–35 (2016)

    Article  CAS  Google Scholar 

  15. C.S. Zhu, L. Zhang, B. Jiang, J.T. Zheng, P. Hu, S.J. Li, M.B. Wu, W.T. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377, 99–108 (2016)

    Article  CAS  Google Scholar 

  16. M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci. 491, 216–229 (2017)

    Article  CAS  Google Scholar 

  17. Y.Y. Li, Y. Si, E.X. Han, W.Q. Huang, W.Y. Hu, A.L. Pan, X.X. Fan, G.F. Huang, Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. J. Phys. D 53, 015502 (2020)

    Article  CAS  Google Scholar 

  18. M.F.R. Samsudin, H. Ullah, A.A. Tahir, X.H. Li, Y.H. Ng, S. Sufian, Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. J. Colloid. Interface Sci. 586, 785–796 (2021)

    Article  CAS  Google Scholar 

  19. B.X. Zhou, S.S. Ding, Y. Wang, X.R. Wang, W.Q. Huang, K. Li, G.F. Huang, Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C3N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution. Nanoscale 12, 6037–6046 (2020)

    Article  CAS  Google Scholar 

  20. M.F.R. Samsudin, S. Sufian, Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics. J. Mol. Liq. 314, 113530 (2020)

    Article  CAS  Google Scholar 

  21. Q. Qiao, W.Q. Huang, Y.Y. Li, B. Li, W.Y. Hu, W. Peng, X.X. Fan, G.F. Huang, In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. J. Mater. Sci. 53, 15882–15894 (2018)

    Article  CAS  Google Scholar 

  22. Q.Q. Liu, J.Y. Shen, X.H. Yu, X.F. Yang, W. Liu, J. Yang, H. Tang, H. Xu, H.M. Li, Y.Y. Li, J.S. Xu, Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets. Appl. Catal. B 248, 84–94 (2019)

    Article  CAS  Google Scholar 

  23. M.F.R. Samsudin, C. Frebillot, Y. Kaddoury, S. Sufian, W.J. Ong, Bifunctional Z-scheme Ag/AgVO3/g-C3N4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without using scavengers. J. Environ. Manage. 270, 110803 (2020)

    Article  CAS  Google Scholar 

  24. S. Tonda, S. Kumar, V. Shanker, In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation. J. Environ. Chem. Eng. 3, 852–861 (2015)

    Article  CAS  Google Scholar 

  25. Y.F. Li, L. Fang, R.X. Jin, Y. Yang, X. Fang, Y. Xing, S.Y. Song, Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 7, 758–764 (2015)

    Article  CAS  Google Scholar 

  26. N. Tian, H.W. Huang, Y. He, Y.X. Guo, Y.H. Zhang, Organic-inorganic hybrid photocatalyst g-C3N4/Ag2CO3 with highly efficient visible-light-active photocatalytic activity. Colloid Surf. A 467, 188–194 (2015)

    Article  CAS  Google Scholar 

  27. J.F. Chen, J.B. Zhong, J.Z. Li, S.T. Huang, W. Hu, M.J. Li, Q. Du, Synthesis and characterization of novel Ag2CO3/g-C3N4 composite photocatalysts with excellent solar photocatalytic activity and mechanism insight. Mol. Catal. 435, 91–98 (2017)

    Article  CAS  Google Scholar 

  28. Y.Y. Wu, Y.Z. Zhou, H. Xu, Q.Q. Liu, Y. Li, L.L. Zhang, H.Q. Liu, Z.G. Tu, X.N. Cheng, J. Yang, Highly active, superstable, and biocompatible Ag/polydopamine/g-C3N4 bactericidal photocatalyst: synthesis, characterization, and mechanism. ACS Sustain. Chem. Eng. 6, 14082–14094 (2018)

    Article  CAS  Google Scholar 

  29. H. Tang, S.F. Chang, G.G. Tang, W. Liang, AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 391, 440–448 (2017)

    Article  CAS  Google Scholar 

  30. L. Liu, Y. Qi, H. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B 183, 133–141 (2016)

    Article  CAS  Google Scholar 

  31. O. Fontellescarceller, M.J. Munozbatista, M. Fernandezgarcia, A. Kubacka, Interface effects in sunlight-driven Ag/g-C3N4 composite catalysts: study of the toluene photodegradation quantum efficiency. ACS Appl. Mater. Interface 8, 2617–2627 (2016)

    Article  CAS  Google Scholar 

  32. H.T. Ren, S.Y. Jia, S.H. Wu, T.H. Zhang, Phase transformation synthesis of novel Ag2O/Ag2CO3/g-C3N4 composite with enhanced photocatalytic activity. Mater. Lett. 142, 15–18 (2015)

    Article  CAS  Google Scholar 

  33. Y.S. Fu, J.W. Zhu, C. Hu, X.D. Wu, Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale 6, 12555–12564 (2014)

    Article  CAS  Google Scholar 

  34. J.R. Ran, T.Y. Ma, G.P. Gao, X.W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015)

    Article  CAS  Google Scholar 

  35. Q.J. Xiang, J.G. Yu, M. Jaronie, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 7355–7363 (2011)

    Article  CAS  Google Scholar 

  36. W.J. Wang, J.C. Yu, D.H. Xia, P.K. Wong, Y.C. Li, Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47, 8724–8732 (2013)

    Article  CAS  Google Scholar 

  37. Y.X. Song, J.X. Zhu, H. Xu, C. Wang, Y.G. Xu, H.Y. Ji, K. Wang, Q. Zhang, H.M. Li, Synthesis, characterization and visible-light photocatalytic performance of Ag2CO3 modified by graphene-oxide. J. Alloys Compd. 592, 258–265 (2014)

    Article  CAS  Google Scholar 

  38. Y.S. Fu, T. Huang, L.L. Zhang, J.W. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7, 13723–13733 (2015)

    Article  CAS  Google Scholar 

  39. J. Yan, Z.G. Chen, H.Y. Ji, Z. Liu, X. Wang, Y.G. Xu, X.J. She, L.Y. Huang, L. Xu, H. Xu, H.M. Li, Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity. Chem. Eur. J. 22, 4764–4773 (2016)

    Article  CAS  Google Scholar 

  40. H.J. Dong, G. Chen, J.X. Sun, Y.J. Feng, C.M. Li, G.H. Xiong, C. Lv, Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag2CO3/AgX heterojunctions achieved by surface modification. Dalton Trans. 43, 7282–7289 (2014)

    Article  CAS  Google Scholar 

  41. M. Xu, L. Han, S.J. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5, 12533–12540 (2013)

    Article  CAS  Google Scholar 

  42. C.S. Pan, Y.F. Zhu, New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye. Environ. Sci. Technol. 44, 5570–5574 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Changzhou Sci & Tech Program (Grant No. CJ20190011), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJD430001), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20180019 and BK20171423), and Practice Innovation Training Program for College Students in Jiangsu (Grant No. 201813101019X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shugang Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Jia, B. & Fu, Y. Ag2CO3 nanoparticles decorated g-C3N4 as a high-efficiency catalyst for photocatalytic degradation of organic contaminants. J Mater Sci: Mater Electron 32, 14464–14476 (2021). https://doi.org/10.1007/s10854-021-06005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06005-2

Navigation