Skip to main content
Log in

Effects of organic additives on the microstructural, rheological and electrical properties of silver paste for LTCC applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver powders were prepared by a chemical reduction method. Effects of different surfactants during this preparation process were examined. Using these silver powders, silver pastes were prepared for low temperature co-fired ceramics (LTCC) applications. Another batch of different surfactants were added into the silver paste and evaluated. Moreover, various organic thixotropic agents were used to modify the thixotropy behavior of the silver paste. It was found that the surfactants of PVP (Polyvinyl pyrrolidone, for preparation of the silver powder) and Span-85 (for the preparation of silver paste) exhibited the best performance, with an electrical resistivity of 0.11 mΩ mm. The silver paste with the thixotropic agent of hydrogenated castor oil shows the largest thixotropic index of 1.56. Using different organic additives, the microstructural, rheological and electrical properties of the silver paste can be considerably improved, and our results shed light on the optimization of the silver paste for LTCC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Vincent, V.K. Gopalakrishnan, S. Sivanandan, T. Radhika, N. Raghu, Adv. Appl. Ceram. 118, 106 (2019)

    Article  CAS  Google Scholar 

  2. J. Bangali, S. Rane, G. Phatak, S. Gangal, S. Gangal, Solder. Surf. Mt. Technol. 20, 41 (2008)

    Article  CAS  Google Scholar 

  3. J.C. Lin, C.Y. Wang, Mater. Chem. Phys. 45, 136 (1996)

    Article  CAS  Google Scholar 

  4. J.S. Jiang, J.E. Liang, H.L. Yi, S.H. Chen, C.C. Hua, Mater. Chem. Phys. 176, 96 (2016)

    Article  CAS  Google Scholar 

  5. R. Faddoul, N. Reverdy-Bruas, A. Blayo, Mater. Sci. Eng. B 177, 1053 (2012)

    Article  CAS  Google Scholar 

  6. H.W. Lin, C.P. Chang, W.H. Hwu, M.D. Ger, J. Mater. Process. Technol. 197, 284 (2008)

    Article  CAS  Google Scholar 

  7. F. Hoeng, A. Denneulin, N. Reverdy-Bruas, G. Krosnicki, J. Bras, Appl. Surf. Sci. 194, 160 (2017)

    Article  Google Scholar 

  8. G. Guo, W. Gan, J. Luo, F. Xiang, J. Zhang, H. Zhou, H. Liu, Appl. Surf. Sci. 256, 6683 (2010)

    Article  CAS  Google Scholar 

  9. Z. Chen, J.W. Chang, C. Balasanthiran, C. Balasanthiran, S.T. Milner, R.M. Rioux, J. Am. Chem. Soc. 141, 4328 (2019)

    Article  CAS  Google Scholar 

  10. Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105 (1996)

    Article  CAS  Google Scholar 

  11. Q. Tian, D. Duo, L.I. Yu, X.Y. Guo, Tran. Nonferr. Met. Soc. China 28, 524 (2018)

    Article  CAS  Google Scholar 

  12. C.N. Chen, C.T. Huang, W.J. Tseng, M.H. Wei, Appl. Surf. Sci. 257, 650 (2010)

    Article  CAS  Google Scholar 

  13. J.S. Jiang, J.E. Liang, H.L. Yi, S.H. Chen, C.C. Hua, J. Polym. Res. 22, 144 (2015)

    Article  Google Scholar 

  14. H.W. Lin, W.H. Hwu, M.D. Ger, J. Mater. Process. Technol. 206, 56 (2008)

    Article  CAS  Google Scholar 

  15. S. Jagtap, V. Deshpande, V. Rane, G. Phatak, D. Amalnerkar, J. Mater. Sci. Mater. Electron. 19, 522 (2008)

    Article  CAS  Google Scholar 

  16. C. Yüce, K. Okamoto, L. Karpowich, A. Adrian, N. Willenbacher, Sol. Energy Mater. Sol. Cells 200, 110040 (2019)

    Article  Google Scholar 

  17. C. Xu, M. Fiess, N. Willenbacher, N. Willenbacher, IEEE J. Photovolt. 7, 129 (2016)

    Article  Google Scholar 

  18. S. Tepner, N. Wengenmeyr, L. Ney, M. Linse, M. Pospischil, F. Clement, Sol. Energy Mater. Sol. Cells 200, 109969 (2019)

    Article  CAS  Google Scholar 

  19. J. Pryce-Jones, Kolloid Z. 192, 96 (1952)

    Article  Google Scholar 

  20. J. Drapier, C. Gallant, D. van de Gaer, U.S. Patent 4857226 1989-8-15

  21. S.J. Sirdesai, G. Schaeffer, U.S. Patent 6,244,274. 2001-6-12

  22. D. Majumdar, H. Ker, P. Schottland, U.S. Patent Application 14/008346 2014-5-8

  23. M.N. Nguyen, C.K. Lee, T.L. Herrington, U.S. Patent 5,183,784 1993-2-2

  24. R.D. Hermansen, S.E. Lau, U.S. Patent 5385966 1995-1-31

  25. P. Coussot, Soft Matter 3, 528 (2007)

    Article  CAS  Google Scholar 

  26. P.C. Andersen, M.L. Jacobson, K.L. Rowlen, J. Phys. Chem. B 108, 2148 (2004)

    Article  CAS  Google Scholar 

  27. S.A. Cumberland, J.R. Lead, J. Chromatogr. A 1216, 9099 (2009)

    Article  CAS  Google Scholar 

  28. K.P. Velikov, G.E. Zegers, A.V. Blaaderen, Langmuir 19, 1384 (2003)

    Article  CAS  Google Scholar 

  29. A. Slistan-Grijalva, R. Herrera-Urbina, J.F. Rivas-Silva, M. Avalos-Borja, F.F. Castillón-Barrazad, A. Posada-Amarillase, Physica E 25, 438 (2005)

    Article  CAS  Google Scholar 

  30. H. Wang, W.J. Yang, K. Li, G. Li, RSC Adv. 8, 8937 (2018)

    Article  CAS  Google Scholar 

  31. W. Songping, J. Mater. Sci. Mater. Electron. 18, 447 (2007)

    Article  Google Scholar 

  32. Z. Liu, X.L. Qi, H. Wang, Adv. Powder. Technol. 23, 250 (2012)

    Article  CAS  Google Scholar 

  33. E.A. Abdel-Aal, F.E. Farghaly, Powder Technol. 178, 51 (2007)

    Article  CAS  Google Scholar 

  34. A. Sinha, B.P. Sharma, Bull. Mater. Sci. 28, 213 (2005)

    Article  CAS  Google Scholar 

  35. H.H. Nersisyan, J.H. Lee, H.T. Son, C.W. Won, D.Y. Maeng, Mater. Res. Bull. 38, 949 (2003)

    Article  CAS  Google Scholar 

  36. S. Park, D. Seo, J. Lee, Colloid Surf. A 313, 197 (2008)

    Article  Google Scholar 

  37. K. Park, D. Seo, J. Lee, Colloid Surf. A 313, 351 (2008)

    Article  Google Scholar 

  38. H. Chen, F. Simon, A. Eychmüller, J. Phys. Chem. C 114, 4495 (2010)

    Article  CAS  Google Scholar 

  39. W. Songping, M. Shuyuan, Mater. Chem. Phys. 89, 423 (2005)

    Article  Google Scholar 

  40. L.L. Wang, Y. Wang, D.A. Yang, Key Eng. Mater. 434, 366 (2010)

    Article  Google Scholar 

  41. C.K. Hsu, J.S. Lee, K.S. Jaw, Thermochim. Acta 367, 335 (2001)

    Article  Google Scholar 

  42. R. Ghelich, H. Abdizadeh, M.R. Jahannama, F.S. Torkik, M.R. Vaezi, Int. J. Appl. Ceram. Technol. 17, 2123 (2020)

    Article  CAS  Google Scholar 

  43. X.Y. Tao, S.X. Zhou, Z.M. Xiang, J. Ma, R.L. Hou, Y.B. Zhu, X.Y. Wei, J. Alloys Compd. 697, 318 (2017)

    Article  CAS  Google Scholar 

  44. L. Zhang, J.Y. Howe, Y. Zhang, H. Fong, Cryst. Growth Des. 9, 667 (2009)

    Article  CAS  Google Scholar 

  45. J.L. Henderson, H.A. Young, J. Phys. Chem. 46, 670 (1942)

    Article  CAS  Google Scholar 

  46. A. Takahashi, N.S. Kitakawa, T. Yonemoto, J. Chem. Eng. Jpn. 33, 481 (2000)

    Article  CAS  Google Scholar 

  47. J.T. Wu, S.L.C. Hsu, M.H. Tsai, W.S. Hwang, Thin Solid Films 20, 5913 (2009)

    Article  Google Scholar 

  48. W.H. Bauer, E.A. Collins, Thioxtropy and dilatancy, in Theory and Applications. ed. by Frederick R. Eirich (Academic Press Inc, Pittsburgh, 1967), p. 423

    Google Scholar 

  49. W.H. Bauer, E.A. Collins, Thioxtropy and dilatancy, in Theory and Applications. ed. by Frederick R. Eirich (Academic Press Inc, Pittsburgh, 1967), p. 449

    Google Scholar 

  50. J. Zhang, Y. Cui, H. Wang, J. Renew. Sustain. Energy 5, 023117 (2013)

    Article  Google Scholar 

  51. J.W. Goodwin, R.R.W. Hughes, Rheology for Chemists: An Introduction, 2nd Edition, Nonlinear Responses (RSC. Publishing, London, 2008), pp. 219–221

    Google Scholar 

  52. R. Brummer, Rheology essentials of cosmetic and food emulsions, in Basic Physical and Mathematical Principles. ed. by H.G. Barth, H. Pasch (Springer, New York, 2006), p. 27

    Google Scholar 

  53. R. Faddoul, N. Reverdy-Bruas, J. Bourel, J. Mater. Sci. Mater. Electron. 23, 1415 (2012)

    Article  CAS  Google Scholar 

  54. J.F. Steffe, Rheological Methods in Food Process Engineering, 2nd Edition, Introduction to Rheology (East Freeman Press, East Lansing, 1996), p. 37

    Google Scholar 

  55. J.W. Goodwin, R.R.W. Hughes, Rheology for Chemists: An Introduction, 2nd Edition, Nonlinear Responses (RSC. Publishing, London, 2008), p. 203

    Google Scholar 

  56. S.B. Rane, P.K. Khanna, T. Seth, T. Seth, G.J. Phatak, D.P. Amalnerkar, B.K. Das, Mater. Chem. Phys. 82, 237 (2003)

    Article  CAS  Google Scholar 

  57. Y. Mou, H. Wang, Y. Peng, J. Liu, Mater. Des. 186, 108339 (2020)

    Article  CAS  Google Scholar 

  58. H.Q. Zhang, H.L. Bai, Q. Jia, Acta Metall. Sin. Engl. 33, 1543 (2020)

    Article  CAS  Google Scholar 

  59. Q. Sun, Y. Qi, M. Li, J. Mater. Sci. Mater. Electron. 31, 8086 (2020)

    Article  CAS  Google Scholar 

  60. H. Zhan, J. Guo, X. Yang, J. Mater. Sci. Mater. Electron. 30, 21343 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51772054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbang Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Du, Z., Yao, Y. et al. Effects of organic additives on the microstructural, rheological and electrical properties of silver paste for LTCC applications. J Mater Sci: Mater Electron 32, 14368–14384 (2021). https://doi.org/10.1007/s10854-021-05999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05999-z

Navigation