Skip to main content

Advertisement

Log in

Optimized energy storage properties of BaTiO3-based ceramics with enhanced grain boundary effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Energy storage dielectric ceramics play a more and more important role in power or electronics systems as a pulse power material, and the development of new technologies has put forward higher requirements for energy storage properties. Here, the sol-gel method was used to synthetize the 0.9BaTiO3-0.1Bi(Mg1/2Zr1/2)O3 (0.9BT–0.1BMZ) precursor powder and 0.9BT-0.1BMZ ceramics with pseudocubic phase was obtained. The 0.9BT-0.1BMZ dielectric ceramics possessed a strong relaxation behavior with 1.64 relaxation degree (g) and 0.15 eV relaxation activation energy (Ea) fitted by modified Curie–Weiss law and Vogel-Fulcher formulas, respectively. The most important was that by controlling the grain size to be reduced, the discharge energy storage density had been improved to 2.0 J/cm3 with high breakdown strength (325 kV/cm). In addition, the comprehensive analysis of electric field distributions, breakdown paths, and impedance spectra was illustrated the enhanced grain boundary effect can improve the energy storage performance obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Li, J.W. Zhai, B. Shen, H.R. Zeng, J. Adv. Dielect. 08, 1830005 (2018)

    Article  CAS  Google Scholar 

  2. I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339 (1972)

    Article  CAS  Google Scholar 

  3. K. Yao, S. Chen, M. Rahimabady, M.S. Mirshekarloo, S. Yu, F.E. Tay, T. Sritharan, L. Lu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 1968 (2011)

    Article  Google Scholar 

  4. H.X. Wang, P.Y. Zhao, L.L. Chen, L.T. Li, X.H. Wang, J. Adv. Ceram. 9, 292 (2020)

    Article  CAS  Google Scholar 

  5. W.G. Ma, Y.W. Zhu, M.A. Marwat, P.Y. Fan, B. Xie, D. Salamon, Z.G. Ye, H.B. Zhang, J. Mater. Chem. C 7, 281 (2019)

    Article  CAS  Google Scholar 

  6. Y. Cao, J. Shen, C. Randall, L.Q. Chen, Acta Mater. 112, 224 (2016)

    Article  CAS  Google Scholar 

  7. H. Ye, F. Yang, Z. Pan, D. Hu, X. Lv, H. Chen, F. Wang, J. Wang, P. Li, J. Chen, J. Liu, J. Zhai, Acta Mater. 203, 116484 (2021)

    Article  CAS  Google Scholar 

  8. N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, J. Am. Ceram. Soc. 96, 3176 (2013)

    Article  CAS  Google Scholar 

  9. Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, J. Mater. Chem. A 3, 18146 (2015)

    Article  CAS  Google Scholar 

  10. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009)

    Article  CAS  Google Scholar 

  11. I. Fujii, S. Trolier-McKinstry, C. Nies, J. Am. Ceram. Soc. 94, 194 (2011)

    Article  CAS  Google Scholar 

  12. P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, Acta Mater. 60, 5022 (2012)

    Article  CAS  Google Scholar 

  13. B.B. Liu, X.H. Wang, Q.C. Zhao, L.T. Li, J. Am. Ceram. Soc. 98, 2641 (2015)

    Article  CAS  Google Scholar 

  14. B.B. Liu, X.H. Wang, R.X. Zhang, L.T. Li, J. Am. Ceram. Soc. 100, 3599 (2017)

    Article  CAS  Google Scholar 

  15. F. Li, X. Hou, T.Y. Li, R.J. Si, C.C. Wang, J.W. Zhai, J. Mater. Chem. C 7, 12127 (2019)

    Article  CAS  Google Scholar 

  16. Z.Y. Shen, Y. Wang, Y.X. Tang, Y.Y. Yu, W.Q. Luo, X.C. Wang, Y.M. Li, Z.M. Wang, F.S. Song, J. Materiomics 5, 641 (2019)

    Article  Google Scholar 

  17. S. Anas, K.V. Mahesh, M.J. Maria, S. Ananthakumar, Sol-Gel Materials for Energy, Environment and Electronic Applications (Springer, Switzerland, 2017), pp. 1–22

    Google Scholar 

  18. H. Hao, H.X. Liu, S.J. Zhang, B. Xiong, X. Shu, Z.H. Yao, M.H. Cao, Scripta Mater. 67, 451 (2012)

    Article  CAS  Google Scholar 

  19. X.W. Jiang, H. Hao, S.J. Zhang, J.H. Lv, M.H. Cao, Z.H. Yao, H.X. Liu, J. Eur. Ceram. Soc. 39, 1103 (2019)

    Article  CAS  Google Scholar 

  20. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    Article  CAS  Google Scholar 

  21. H. Terauchi, Y. Watanabe, H. Kasatani, K. Kamigaki, Y. Bando, J. Phys. Soc. Jpn 61, 2194 (1992)

    Article  CAS  Google Scholar 

  22. T. Usher, T. Iamsasri, J.S. Forrester, N. Raengthon, N. Triamnak, D.P. Cann, J.L. Jones, J. Appl. Phys. 120, 184102 (2016)

    Article  Google Scholar 

  23. M.A. Beuerlein, N. Kumar, T.M. Usher, H.J. Brown Shaklee, N. Raengthon, I.M. Reaney, D.P. Cann, J.L. Jones, G.L. Brennecka, J. Am. Ceram. Soc. 99, 2849 (2016)

    Article  CAS  Google Scholar 

  24. L.H. Robins, D.L. Kaiser, L.D. Rotter, P.K. Schenck, G.T. Stauf, D. Rytz, J. Appl. Phys. 76, 7487 (1994)

    Article  CAS  Google Scholar 

  25. A.D. Li, C.Z. Ge, P. Lü, D. Wu, S.B. Xiong, N.B. Ming, Appl. Phys. Lett. 70, 1616 (1997)

    Article  CAS  Google Scholar 

  26. H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, S. Trukhanov, J. Mater. Chem. C 8, 4690 (2020)

    Article  CAS  Google Scholar 

  27. R. Loudon, Adv. Phys. 122, 477 (1964)

    Google Scholar 

  28. M. Didomenico, S.H. Wemple, S.P.S. Porto, R.P. Bauman, Phys. Rev. 174, 522 (1968)

    Article  CAS  Google Scholar 

  29. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085 (2001)

    Article  CAS  Google Scholar 

  30. Q.Y. Hu, J.H. Bian, P.S. Zelenovskiy, Y. Tian, L. Jin, X.Y. Wei, Z. Xu, V.Y. Shur, J. Appl. Phys. 124, 54101 (2018)

    Article  Google Scholar 

  31. A. Kumar, I. Rivera, R.S. Katiyar, J. Raman Spectrosc. 40, 459 (2009)

    Article  CAS  Google Scholar 

  32. J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2011)

    Article  Google Scholar 

  33. F. Bahri, H. Khemakhem, Ceram. Int. 40, 7909 (2014)

    Article  CAS  Google Scholar 

  34. N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, J. Appl. Phys. 91, 10038 (2002)

    Article  CAS  Google Scholar 

  35. U.A. Joshi, S. Yoon, S. Baik, J.S. Lee, J. Phys. Chem. B 110, 12249 (2006)

    Article  CAS  Google Scholar 

  36. Q.Y. Hu, Y. Tian, Q.S. Zhu, J.H. Bian, L. Jin, H.L. Du, D.O. Alikin, V.Y. Shur, Y.J. Feng, Z. Xu, X.Y. Wei, Nano Energy 67, 104264 (2020)

    Article  CAS  Google Scholar 

  37. F. Bahri, H. Khemakhem, Ceram. Int. 39, 7571 (2013)

    Article  CAS  Google Scholar 

  38. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, J. Mater. Chem. C 6, 8528 (2018)

    Article  CAS  Google Scholar 

  39. D.X. Li, Z.Y. Shen, Z.P. Li, W.Q. Luo, X.C. Wang, Z.M. Wang, F.S. Song, Y.M. Li, J. Adv. Ceram. 9, 183 (2020)

    Article  CAS  Google Scholar 

  40. D.X. Li, Z.Y. Shen, Z.P. Li, W.Q. Luo, F.S. Song, X.C. Wang, Z.M. Wang, Y.M. Li, J. Mater. Chem. C 8, 7650 (2020)

    Article  CAS  Google Scholar 

  41. R. Pirc, R. Blinc, Phys. Rev. B 76, 20101 (2007)

    Article  Google Scholar 

  42. D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, J. Am. Ceram. Soc. 96, 2197 (2013)

    Article  CAS  Google Scholar 

  43. L.W. Wu, X.H. Wang, L.T. Li, RSC Adv. 6, 14273 (2016)

    Article  CAS  Google Scholar 

  44. N. Qu, H.L. Du, X.H. Hao, J. Mater. Chem. C 7, 7993 (2019)

    Article  CAS  Google Scholar 

  45. G. Burns, F.H. Dacol, Solid State Commun. 42, 9 (1982)

    Article  CAS  Google Scholar 

  46. Q.B. Yuan, F.Z. Yao, S.D. Cheng, L.X. Wang, Y.F. Wang, S.B. Mi, Q. Wang, X.H. Wang, H. Wang, Adv. Funct. Mater. 30, 2000191 (2020)

    Article  CAS  Google Scholar 

  47. P.J. Wang, D. Zhou, H.H. Guo, W.F. Liu, J.Z. Su, M.S. Fu, C. Singh, S. Trukhanov, A. Trukhanov, J. Mater. Chem. A 8, 11124 (2020)

    Article  CAS  Google Scholar 

  48. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)

    Article  Google Scholar 

  49. W.G. Pan, M.H. Cao, A. Jan, H. Hao, Z.H. Yao, H.X. Liu, J. Mater. Chem. C 8, 2019 (2020)

    Article  CAS  Google Scholar 

  50. Y. Shi, Y. Pu, Y. Cui, Y. Luo, J. Mater. Sci. Mater. Electron. 28, 13229 (2017)

    Article  CAS  Google Scholar 

  51. N. Kumar, E.A. Patterson, T. Frömling, D.P. Cann, J. Am. Ceram. Soc. 99, 3047 (2016)

    Article  CAS  Google Scholar 

  52. S. Yoon, C.A. Randall, K. Hur, J. Am. Ceram. Soc. 8, 1766 (2009)

    Article  Google Scholar 

  53. J. Huang, Y. Zhang, T. Ma, H. Li, L. Zhang, Appl. Phys. Lett. 96, 42902 (2010)

    Article  Google Scholar 

  54. X.R. Wang, Y. Zhang, X.Z. Song, Z.B. Yuan, T. Ma, Q. Zhang, C.S. Deng, T.X. Liang, J. Eur. Ceram. Soc. 32, 559 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Program of the Natural Science Foundation of China (51790490), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Natural Science Foundation of China (51872213), and the Fundamental Research Funds for the Central Universities (2017YB011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Hao.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Hao, H., Zhou, J. et al. Optimized energy storage properties of BaTiO3-based ceramics with enhanced grain boundary effect. J Mater Sci: Mater Electron 32, 14328–14336 (2021). https://doi.org/10.1007/s10854-021-05995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05995-3

Navigation