Skip to main content

Advertisement

Log in

Enhanced photocatalytic mineralization efficiency of anionic element doped ZnO by improving separation of excitons

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon-doped ZnO nanoparticles were synthesized through different carbon precursors namely fullerene, glucose, and sucrose via hydrothermal method. The presence of carbon in the ZnO lattice was confirmed by the shifting of diffraction peaks and micro Raman characteristic peak of ZnO towards the lower values. XPS spectra confirms the Zn–O–C bond from the shifting of binding energy peaks towards the higher value for C-ZnO due to the variation in the electronegativity values of C and O. Based on the elemental analysis and photoluminescence studies, the deficiency of O and Zn in ZnO was confirmed while ZnO doped with carbon. The visible-light catalytic performance of the prepared photocatalysts for the mineralization of organic dye was studied. Carbon plays a significant contribution to enhance the photocatalytic activity and photostability of pristine ZnO till fourth cycle by overcoming the photocorrosion of ZnO because of its environmental and biological friendly nature. The trapping experiments were employed to demonstrate the degradation process and the possible photocatalysis mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.A. Hassaan, A. El Nemr, Advanced oxidation processes for textile wastewater treatment. Int. J. Photochem. Photobiol. 2(3), 85–93 (2017)

    Google Scholar 

  2. N. Srinivasan alias Arunsankar, M. Anbuchezhiyan, S. Harish, S. Ponnusamy, Hydrothermal synthesis of C doped ZnO nanoparticles coupled with BiVO4 and their photocatalytic performance under the visible light irradiation. Appl. Surf. Sci. 494, 771–782 (2019)

    Article  Google Scholar 

  3. S. Kuriakose, N. Bhardwaj, J. Singh, B. Satpati, S. Mohapatra, Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beils. J. Nanotechnol. 4, 763–770 (2013)

    Article  CAS  Google Scholar 

  4. G. Bandekar, N.S. Rajurkar, I.S. Mulla, U.P. Mulik, D.P. Amalnerkar, P.V. Adhyapak, Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl. Nanosci. 4, 199–208 (2014)

    Article  CAS  Google Scholar 

  5. J. Gupta, J. Mohapatra, D. Bahadur, Visible light driven mesoporous Ag-embedded ZnO nanocomposites: reactive oxygen species enhanced photocatalysis, bacterial inhibition and photodynamic therapy. Dalton Trans. 46, 685–696 (2017)

    Article  CAS  Google Scholar 

  6. S. Vignesh, S. Suganthi, J.K. Sundar, P. Vairamuthu Raj, I. Devi, Highly efficient visible light photocatalytic and antibacterial performance of PVP capped Cd:Ag: ZnO photocatalyst nanocomposites. Appl. Surf. Sci. 15, 914–929 (2019)

    Article  Google Scholar 

  7. H.Y. Ching, C.S. Yi, J.J. Mirn, Photocatalytic H2 generation efficiencies of TiO2 nanotube-based heterostructures grafted with ZnO nanorods, Ag nanoparticles, or Pd nanodendrites. J. Phys. Chem. C 121, 19063–19068 (2017)

    Article  Google Scholar 

  8. S. Harish, M. Navaneethan, J. Archana, A. Silambarasn, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation. Dalton Trans. 44, 10490–10498 (2015)

    Article  CAS  Google Scholar 

  9. S.S. Alias, A.B. Ismail, A.A. Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd. 499, 231–237 (2010)

    Article  CAS  Google Scholar 

  10. P. Chand, A. Gaur, A. Kumar, Structural and optical properties of ZnO nanoparticles synthesized at different pH values. J. Alloys Compd. 539, 174–178 (2012)

    Article  CAS  Google Scholar 

  11. N. Kumaresan, K. Ramamurthi, R. Ramesh Babu, K. Sethuraman, S. Moorthy Babu, Hydrothermally grown ZnO nanoparticles for effective photocatalytic activity. Appl. Surf. Sci. 418, 138–146 (2017)

    Article  CAS  Google Scholar 

  12. L.X. Fu, Y. Guo, X.C. Yang, J. Huang, L.J. Wang, Carbon dots modifier for highly active photocatalysts based on ZnO porous microspheres. J. Mater. Sci. Mater. Electron. 29(23), 19994–20002 (2018)

    Article  CAS  Google Scholar 

  13. H. Moussaa, E. Girot, K. Mozet, H. Alemc, G. Medjahdi, R. Schneider, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B Environ. 185, 11–21 (2016)

    Article  Google Scholar 

  14. C.J. Chang, K.W. Chu, M.H. Hsu, C.Y. Chen, Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. Int. J. Hydrog. Energy 40, 14498–14506 (2015)

    Article  CAS  Google Scholar 

  15. S.B. Babar, N.L. Gavade, D.P. Bhopate, N. Abhijit, S.B. Kadam, S.D. Kokane, A.G. Sartale, K.M. Garadkar, V.M. Bhuse, An efficient fabrication of ZnO–carbon nanocomposites with enhanced photocatalytic activity and superior photostability. J. Mater. Sci. Mater. Electron. 30, 1133–1147 (2019)

    Article  CAS  Google Scholar 

  16. H. Fu, T. Xu, S. Zhu, Y. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ. Sci. Technol. 42, 8064–8069 (2008)

    Article  CAS  Google Scholar 

  17. X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications. J. Phys. Chem. C 119, 20544–20554 (2015)

    Article  CAS  Google Scholar 

  18. S. Akir, A. Hamdi, A. Addad, Y. Coffinier, R. Boukherroub, A.D. Omrani, Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl. Surf. Sci. 400, 461–470 (2017)

    Article  CAS  Google Scholar 

  19. C. Sasirekha, S. Arumugam, G. Muralidharan, Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl. Surf. Sci. 15, 521–527 (2018)

    Article  Google Scholar 

  20. A.S. Ahmed, L.C. Alshammari, X. Chen, A. Bagabas, D. Kramer, A. Alromaeh, Z. Jiang, Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis. RSC Adv. 5, 27690–27698 (2015)

    Article  Google Scholar 

  21. S. Suwanboon, P. Amornpitksuk, C. Randorn, Effect of tartaric acid as a structure-directing agent on different ZnO morphologies and their physical and photocatalytic properties. Ceram. Int. 45, 2111–2116 (2019)

    Article  CAS  Google Scholar 

  22. S. Harish, M. Sabarinathan, J. Archana, M. Navaneethan, K.D. Nisha, S. Ponnusamy, C. Vinay Gupta, D.K. Muthamizhchelvan, H. Aswal, Y.H. Ikeda, Synthesis of ZnO/SrO nanocomposites for enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 418, 147–155 (2017)

    Article  CAS  Google Scholar 

  23. J.J. Beltrán, C.A. Barrero, A. Punnoose, Relationship between ferromagnetism and formation of complex carbon bonds in carbon doped ZnO powders. Phys. Chem. Chem. Phys. 21, 8808–8819 (2019)

    Article  Google Scholar 

  24. H. Wang, X. Liu, S. Wang, Li. Lia, Dual templating fabrication of hierarchical porous three-dimensional ZnO/carbon nanocomposites for enhanced photocatalytic and photoelectrochemical activity. Appl. Catal. B Environ. 222, 209–218 (2018)

    Article  CAS  Google Scholar 

  25. M. Silambarasan, S. Saravanan, T. Soga, Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. Int. J. ChemTech Res. 7, 1644–1650 (2015)

    Google Scholar 

  26. R. Sankar Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuators B 255, 672–683 (2018)

    Article  CAS  Google Scholar 

  27. P. Li, X. Wang, X. Zhang, L. Zhang, X. Yang, B. Zhao, Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface enhanced Raman scattering: doping induced band-gap shrinkage. Front. Chem. 7, 1–9 (2019). https://doi.org/10.3389/fchem.2019.00144

    Article  CAS  Google Scholar 

  28. R. Kumar, R.K. Singh, D.P. Singh, R. Savu, S.A. Moshkalev, Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies. Mater. Des. 111, 291–300 (2016)

    Article  CAS  Google Scholar 

  29. M. Jay Chitra, M. Sathya, K. Pushpanadan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metal. Sin. (Engl. Lett.) 28(3), 394–405 (2015)

    Article  Google Scholar 

  30. P. Sundara Venkatesh, V. Purushothaman, S. Esakki Muthu, S. Arumugam, V. Ramakrishnan, K. Jeganathan, K. Ramamurthi, Role of point defects on the enhancement of room temperature ferromagnetism in ZnO nanorods. CrystEngComm 14, 4713–4718 (2012)

    Article  Google Scholar 

  31. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Qi. Zheng, K. Wei, J. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J. Phys. Chem. C 112, 10773–10777 (2008)

    Article  CAS  Google Scholar 

  32. D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv. 4, 35735–35743 (2014)

    Article  CAS  Google Scholar 

  33. S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, Oxygen vacancy induced band gap narrowing of ZnO nanostructure by electrochemically active biofilm. Nanoscale 5, 9238–9246 (2013)

    Article  CAS  Google Scholar 

  34. R. Ashouri, P. Ghasemipoor, B. Rasekh, F. Yazdian, S.R. Mofradnia, M. Fattahi, The effect of ZnO-based carbonaceous materials for degradation of benzoic pollutants: a review. Int. J. Environ. Sci. Technol. 16, 1729–1740 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Management, Principal, Vice Principal and HOD Physics, SRM Valliammai Engineering College and Functional Materials and Energy Devices Lab SRMIST for providing the research lab facilities. The author NS thankful to the Management, Principal, Sri Sai Ram Engineering College for their encouragement and support. The authors acknowledge Nanotechnology Research Centre (NRC), SRMIST (XRD, UV-DRS, XPS and FESEM) for providing the research facilities. Also, the authors acknowledge HRTEM Facility at SRMIST set up with support from MNRE (Project No. 31/03/2014-15/PVSE-R&D), Government of India, Micro-Raman Facility at SRMIST and Photoluminescence spectrometer facility at SRM Research Institute, SRMIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anbuchezhiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan alias Arunsankar, N., Anbuchezhiyan, M. & Padmaja, S. Enhanced photocatalytic mineralization efficiency of anionic element doped ZnO by improving separation of excitons. J Mater Sci: Mater Electron 32, 12631–12647 (2021). https://doi.org/10.1007/s10854-021-05899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05899-2

Navigation