Skip to main content
Log in

High-efficiency microwave absorption performance of cobalt ferrite microspheres/multi-walled carbon nanotube composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, spinel ferrite CoFe2O4 and multi-walled carbon nanotubes (MWCNTs) composites are constructed by a facile one-step solvothermal method. The pure phase of CoFe2O4 particles is confirmed by X-ray diffraction patterns. Microstructure analysis demonstrates that monodisperse CoFe2O4 microspheres are wound by MWCNTs. With the introduction of CNTs, there is a significant enhancement in the imaginary part of permittivity (ε″) with the composites. The champion microwave absorption performance can be achieved in the composites by the balance of complex permittivity and permeability. When the mass fraction of CNTs is 3%, a minimum reflection loss (RLmin) of the composites is as high as − 46.65 dB at 14.4 GHz at a thin thickness of 1.5 mm, and the corresponding effective absorption bandwidth below − 10 dB reaches 4.91 GHz ranging from 12.41 to 17.32 GHz which covers almost the whole Ku band (12.0–18.0 GHz). In other words, these as-synthesized composites show the most outstanding specific RLmin of − 31.1 dB mm−1. Such superior microwave absorption behaviors of CoFe2O4/CNTs originate mainly from multiple dielectric relaxation processes, enhanced impedance matching and magnetic loss, as well as the considerable interface between mesoporous CoFe2O4 hollow microspheres and CNTs, thereby promoting microwave reflection and scattering within the samples. Our results indicate that as-fabricated CoFe2O4/CNTs composites can be a promising microwave absorbent integrating with a thin thickness, strong absorption ability, and broad bandwidth absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, C.G. Lee, Appl. Phys. Lett. 89, 053115 (2006)

    Article  Google Scholar 

  2. Q.M. Hu, R.L. Yang, Z.C. Mo, D.W. Lu, L.L. Yang, Z.F. He, H. Zhu, Z.K. Tang, X.C. Gui, Carbon 153, 737–744 (2019)

    Article  CAS  Google Scholar 

  3. X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, Carbon 157, 130–139 (2020)

    Article  CAS  Google Scholar 

  4. R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Xue, Adv. Mater. 16, 401–405 (2004)

    Article  CAS  Google Scholar 

  5. N.N. Wu, D.M. Xu, F. Yang, W. Liu, J.R. Liu, Ind. Eng. Chem. Res. 58, 6446–6455 (2019)

    Article  CAS  Google Scholar 

  6. S.S. Wang, Y. Zhao, H.L. Xue, J.R. Xie, C.H. Feng, H.S. Li, D.X. Shi, S. Muhammad, Q.Z. Jiao, Mater. Lett. 223, 186–189 (2018)

    Article  CAS  Google Scholar 

  7. X.Q. Cui, W. Liu, W.H. Gu, X.H. Liang, G.B. Ji, Inorg. Chem. Front. 6, 590–597 (2019)

    Article  CAS  Google Scholar 

  8. L. Huang, J.J. Li, Z.J. Wang, Y.B. Li, X.D. He, Y. Yuan, Carbon 143, 507–516 (2019)

    Article  CAS  Google Scholar 

  9. S. Golchinvafa, S.M. Masoudpanah, M. Jazirehpour, J. Alloys Compd. 809, 151746 (2019)

    Article  CAS  Google Scholar 

  10. J.J. Li, Y.Z. Feng, Y.F. Wu, Y. Yuan, Phys. B 561, 16–22 (2019)

    Article  CAS  Google Scholar 

  11. S.L. Zhang, Q.Z. Jiao, Y. Zhao, H.S. Li, Q. Wu, J. Mater. Chem. A 2, 18033–18039 (2014)

    Article  CAS  Google Scholar 

  12. T. Shang, Q.S. Lu, L.M. Chao, Y.L. Qin, Y.H. Yun, G.H. Yun, Appl. Surf. Sci. 434, 234–242 (2018)

    Article  CAS  Google Scholar 

  13. X.Y. Zhang, L. Xia, B. Zhong, H. Yang, B. Shi, L.N. Huang, Y.N. Yang, X.X. Huang, J. Alloys Compd. 799, 368–376 (2019)

    Article  CAS  Google Scholar 

  14. H.B. Yang, T. Ye, Y. Lin, M. Liu, Appl. Surf. Sci. 357, 1289–1293 (2015)

    Article  CAS  Google Scholar 

  15. Y.B. Zainal, A.M. Dedi, Key Eng. Mater. 855, 322–329 (2020)

    Article  Google Scholar 

  16. S.L. Zhang, Z.W. Qi, Y. Zhao, Q.Z. Jiao, X. Ni, Y.J. Wang, Y. Chang, C. Ding, J. Alloys Compd. 694, 309–312 (2017)

    Article  CAS  Google Scholar 

  17. M.J. Lu, J. Wang, X.G. Su, Q.L. Wu, T.Y. Yan, X.X. Zhang, Mater. Lett. 253, 46–49 (2019)

    Article  CAS  Google Scholar 

  18. Y. Wang, D. Su, A. Ung, J.H. Ahn, G. Wang, Nanotechnology 23, 055402 (2012)

    Article  CAS  Google Scholar 

  19. R. Qiang, Y.C. Du, Y. Wang, N. Wang, C.H. Tian, J. Ma, P. Xu, X.J. Han, Carbon 98, 599–606 (2016)

    Article  CAS  Google Scholar 

  20. X.-J. Zhang, J.-Q. Zhu, P.-G. Yin, A.-P. Guo, A.-P. Huang, L. Guo, G.-S. Wang, Adv. Funct. Mater. 28, 1800761 (2018)

    Article  Google Scholar 

  21. Y. Cheng, Y. Li, G.B. Ji, B. Quan, X.H. Liang, Z.X. Zhao, J.M. Cao, Y.W. Du, J. Alloys Compd. 708, 587–593 (2017)

    Article  CAS  Google Scholar 

  22. K. Qian, Z.J. Yao, H.Y. Lin, J.T. Zhou, A.A. Haidry, T.B.H. Qi, W.J. Chen, X.L. Guo, Ceram. Int. 46, 227–235 (2020)

    Article  CAS  Google Scholar 

  23. Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, A.C.S. Appl, Mater. Inter. 6, 12997–13006 (2014)

    Article  CAS  Google Scholar 

  24. X. Li, L.M. Yu, W.K. Zhao, Y.Y. Shi, L.J. Yu, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, X.D. Liu, F.Y. Fu, Chem. Eng. J. 379, 122393 (2020)

    Article  CAS  Google Scholar 

  25. M. Zong, Y. Huang, H.W. Wu, Y. Zhao, Q.F. Wang, X. Sun, Mater. Lett. 114, 52–55 (2014)

    Article  CAS  Google Scholar 

  26. G. Li, L.M. Sheng, L.M. Yu, K. An, W. Ren, X.L. Zhao, Mater. Sci. Eng. B 193, 153–159 (2015)

    Article  CAS  Google Scholar 

  27. J.T. Feng, Y.C. Wang, Y.H. Hou, J.B. Li, L.C. Li, Ceram. Int. 42, 17814–17821 (2016)

    Article  CAS  Google Scholar 

  28. Z.Y. Liu, G.L. Xu, M. Zhang, K. Xiong, P.Y. Meng, J. Mater. Sci.-Mater. Electron. 27, 9278–9285 (2016)

    Article  CAS  Google Scholar 

  29. Y.J. Li, M.W. Yuan, H.H. Liu, G.B. Sun, J. Alloys Compd. 826, 154147 (2020)

    Article  CAS  Google Scholar 

  30. F. Yan, S. Zhang, X. Zhang, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, J. Mater. Chem. C 6, 12781–12787 (2018)

    Article  CAS  Google Scholar 

  31. D.W. Liu, Y.C. Du, F.Y. Wang, Y.H. Wang, L.R. Cui, H.H. Zhao, X.J. Han, Carbon 157, 478–485 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Educational Commission of Anhui Province (KJ2018A0393), and Anhui Provincial Natural Science Foundation (1908085QA36 and 1908085QF293).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhang or Qiangchun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, M., Hu, K. et al. High-efficiency microwave absorption performance of cobalt ferrite microspheres/multi-walled carbon nanotube composites. J Mater Sci: Mater Electron 32, 26021–26033 (2021). https://doi.org/10.1007/s10854-021-05877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05877-8

Navigation