Skip to main content

Advertisement

Log in

Structural, optical, and magnetic properties of nanostructured Ag-substituted Co-Zn ferrites: insights on anticancer and antiproliferative activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic spinel ferrite nanoparticles possess high scientific attention for the researchers attributed to its broad area for biomedicine purposes, comprising cancer magnetic hyperthermia and targeted drug delivery. Herein, we report the ultrasound irritation assisted the sol–gel method for the spinel Zn0.5Co0.5-xAg2xFe2O4 (x = 0.00, 0.10, 0.20, and 0.30) nanoparticles (NPs) synthesis. The Rietveld refinement patterns revealed the successful synthesis of the cubic structure Zn0.5Co0.5-xAg2xFe2O4 and the crystallite size ranged from 14.1 nm to 18.4 nm. Also, the optical band gap decreased from 2.39 eV for Co-Zn ferrite to 2.20 eV for Zn0.5Co0.2Ag0.6Fe2O4 sample. Electron paramagnetic resonance spectroscopy was used to study ferromagnetic resonance characteristics of the Zn0.5Co0.5-xAg2xFe2O4 samples. The resonance field was increased from 2512.2 Gauss for Co-Zn ferrite sample to 2834.8 Gauss for Zn0.5Co0.2Ag0.6Fe2O4 sample, while the line width decreased from 2401.3 to 1990.1 Gauss. Also, the saturation was reduced from 45.68 emu.g−1 for the pristine Zn0.5Co0.5Fe2O4 sample to 22.20 emu.g−1 for Zn0.5Co0.2Ag0.6Fe2O4 sample. Furthermore, cytotoxicity of Zn0.5Co0.2Ag0.6Fe2O4 NPs against human breast cancer MCF-7, HepG2 liver cancer, and LoVo colorectal cancer cells was examined. The cytotoxicity of Zn0.5Co0.2Ag0.6Fe2O4 on the previous cancer cell lines resulted in inhibition of cell growth estimated by MTT assay. The exposure of MCF-7, HepG2, and LoVo cancer cells to Zn0.5Co0.2Ag0.6Fe2O4 NPs for 24hs proved a significant apoptotic activity by significant induction of p53 gene expression and caspase activity and antiproliferative activity by amelioration of MMP-2 activity and Bcl-2 gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, (2016) Cancer statistics. CA: A Cancer Journal for Clinicians 66(1), 7–30 (2016)

    Google Scholar 

  2. R.S. Katikireddi, R.S. Setty, The incidence of common cancers in south indian region-a hospital based cross sectional study-research article. International Journal of Current Research and Review 5(23), 37 (2013)

    Google Scholar 

  3. Y.A. Fouad, C. Aanei, Revisiting the hallmarks of cancer. Am. J. Cancer Res. 7(5), 1016 (2017)

    CAS  Google Scholar 

  4. A. Todd, P.W. Groundwater, J.H. Gill, Anticancer Therapeutics: From Drug Discovery to Clinical Applications (Wiley, Chichester, UK, 2018).

    Google Scholar 

  5. S. Wu, W. Zhu, P. Thompson, Y.A. Hannun, Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 9(1), 1–12 (2018)

    Google Scholar 

  6. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Coll. Interface. Sci. 265, 29–44 (2019)

    CAS  Google Scholar 

  7. J. He, S. Yang, A. Riisager, Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catal. Sci. Technol. 8(3), 790–797 (2018)

    CAS  Google Scholar 

  8. A. Meidanchi, A. Motamed, Preparation, characterization and in vitro evaluation of magnesium ferrite superparamagnetic nanoparticles as a novel radiosensitizer of breast cancer cells. Ceramics International. 46(11), 17577–17583 (2020)

    CAS  Google Scholar 

  9. M.I.A. Abdel Maksoud, A.M. Elgarahy, C. Farrell, A.H. Al-Muhtaseb, D.W. Rooney, A.I. Osman, Insight on water remediation application using magnetic nanomaterials and biosorbents. Coordination Chemistry Reviews 403, 213096 (2020)

    Google Scholar 

  10. M.I.A. Abdel Maksoud, A. El-Ghandour, A.H. Ashour, M.M. Atta, S. Abdelhaleem, A.H. El-Hanbaly, R.A. Fahim, S.M. Kassem, M.S. Shalaby, A.S. Awed, La3+ doped LiCo0.25Zn0.25Fe2O4 spinel ferrite nanocrystals: Insights on structural, optical and magnetic properties. Journal of Rare Earths (2020). https://doi.org/10.1016/j.jre.2019.12.017

    Article  Google Scholar 

  11. M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour, D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters 19(1), 375–439 (2021)

    CAS  Google Scholar 

  12. E. Sarala, M. Madhukara Naik, M. Vinuth, Y.V. Rami Reddy, H.R. Sujatha, Green synthesis of Lawsonia inermis-mediated zinc ferrite nanoparticles for magnetic studies and anticancer activity against breast cancer (MCF-7) cell lines. Journal of Materials Science: Materials in Electronics 31(11), 8589–8596 (2020)

    CAS  Google Scholar 

  13. F. Gandomi, S.M. Peymani-Motlagh, M. Rostami, A. Sobhani-Nasab, M. Fasihi-Ramandi, M. Eghbali-Arani, R. Ahmadian, N. Gholipour, M. Rahimi-Nasrabadi, M.R. Ganjali, Simple synthesis and characterization of Li0.5Fe2.5O4, LiMg0.5Fe2O4 and LiNi0.5Fe2O4, and investigation of their photocatalytic and anticancer properties on hela cells line. Journal of Materials Science Materials in Electronics 30(22), 19691–19702 (2019)

    CAS  Google Scholar 

  14. S. Liu, M.C. Yuen, R. Kramer-Bottiglio, Reconfigurable electronic devices enabled by laser-sintered liquid metal nanoparticles. Flexible and Printed Electronics 4(1), 015004 (2019)

    CAS  Google Scholar 

  15. M.S.J. Khan, T. Kamal, F. Ali, A.M. Asiri, S.B. Khan, Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int. J. Biol. Macromol. 132, 772–783 (2019)

    CAS  Google Scholar 

  16. B.A. Aderibigbe, Metal-based nanoparticles for the treatment of infectious diseases. Molecules 22(8), 1370 (2017)

    Google Scholar 

  17. D. Shcharbin, I. Halets-Bui, V. Abashkin, V. Dzmitruk, S. Loznikova, M. Odabaşı, Ö. Acet, B. Önal, N. Özdemir, N. Shcharbina, Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf., B 182, 110354 (2019)

    CAS  Google Scholar 

  18. R. Salomoni, P. Léo, A. Montemor, B. Rinaldi, M. Rodrigues, Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 10, 115 (2017)

    CAS  Google Scholar 

  19. S. Park, H.H. Park, S.Y. Kim, S.J. Kim, K. Woo, G. Ko, Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 80(8), 2343–2350 (2014)

    Google Scholar 

  20. N.T. Khan, M. Mushtaq, Determination of antifungal activity of silver nanoparticles produced from Aspergillus Niger. Biology and Medicine 9(1), 1 (2017)

    Google Scholar 

  21. G. Kannayiram, A. Sandhya, S. Sowmiya, S. Valarmathi, D. Joseph, Anti-inflammatory activity of nigella sativa silver nanoparticles: biochemical study Pharmaceut. Asian J. Clin. Res (2019). https://doi.org/10.22159/ajpcr.2019.v12i2.29775

    Article  Google Scholar 

  22. S. Yesilot, C. Aydin, Silver nanoparticles; a new hope in cancer therapy? Eastern Journal of Medicine 24(1), 111–116 (2019)

    Google Scholar 

  23. K. Venugopal, H. Rather, K. Rajagopal, M. Shanthi, K. Sheriff, M. Illiyas, R. Rather, E. Manikandan, S. Uvarajan, M. Bhaskar, Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol., B 167, 282–289 (2017)

    CAS  Google Scholar 

  24. R. Zein, I. Alghoraibi, C. Soukkarieh, A. Salman, A. Alahmad, In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves. Heliyon 6(8), e04594 (2020)

    CAS  Google Scholar 

  25. A.H. Ashour, A.I. El-Batal, M.I.A.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    CAS  Google Scholar 

  26. M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1–x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Materials Science and Engineering: C 92, 644–656 (2018)

    CAS  Google Scholar 

  27. M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    CAS  Google Scholar 

  28. M.I.A.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, R.A. Fahim, M.M. Atta, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  29. M.I.A. Abdel Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. Journal of Sol-Gel Science and Technology 90(3), 631–642 (2019)

    CAS  Google Scholar 

  30. A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)

    CAS  Google Scholar 

  31. P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    CAS  Google Scholar 

  32. F.M. Freimoser, C.A. Jakob, M. Aebi, U. Tuor, The MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl. Environ. Microbiol. 65(8), 3727–3729 (1999)

    CAS  Google Scholar 

  33. K.J. Livak, T.D. Schmittgen, Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4), 402–408 (2001)

    CAS  Google Scholar 

  34. R. Yin, S.-Q. Mao, B. Zhao, Z. Chong, Y. Yang, C. Zhao, D. Zhang, H. Huang, J. Gao, Z. Li, Y. Jiao, C. Li, S. Liu, D. Wu, W. Gu, Y.-G. Yang, G.-L. Xu, H. Wang, Ascorbic Acid Enhances Tet-Mediated 5-Methylcytosine Oxidation and Promotes DNA Demethylation in Mammals. J. Am. Chem. Soc. 135(28), 10396–10403 (2013)

    CAS  Google Scholar 

  35. K. Nadeem, M. Shahid, M. Mumtaz, Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles. Progress in Natural Science: Materials International 24(3), 199–204 (2014)

    CAS  Google Scholar 

  36. B. Gauri, K. Vidya, D. Sharada, W. Shobha, Synthesis and characterization of Ag/AgO nanoparticles as alcohol sensor. Res J Chem Environ 20(10), 1–5 (2016)

    CAS  Google Scholar 

  37. H. Yang, Y.-Y. Ren, T. Wang, C. Wang, Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results in Physics 6, 299–304 (2016)

    Google Scholar 

  38. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)

    CAS  Google Scholar 

  39. E.K. Abdel-Khalek, D.A. Rayan, A.A. Askar, M.I.A.A. Maksoud, H.H. El-Bahnasawy, Synthesis and characterization of SrFeO3-δ nanoparticles as antimicrobial agent. J. Sol-Gel. Sci. Technol. 97(1), 27–38 (2021)

    CAS  Google Scholar 

  40. Y. Gao, Z. Wang, J. Pei, H. Zhang, Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloy. Compd. 774, 1233–1242 (2019)

    CAS  Google Scholar 

  41. P. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918)

    Google Scholar 

  42. U. Holzwarth, N. Gibson, The Scherrer equation versus the “Debye-Scherrer equation.” Nat. Nanotechnol. 6(9), 534–534 (2011)

    CAS  Google Scholar 

  43. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics 6(1), 6 (2012)

    Google Scholar 

  44. M.K. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, D.L. Sastry, Study of structural, morphological and magnetic properties of Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691–697 (2019)

    CAS  Google Scholar 

  45. M. Amer, T. Meaz, A. Hashhash, S. Attalah, A. Ghoneim, Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)

    CAS  Google Scholar 

  46. S.K. Gore, S.S. Jadhav, V.V. Jadhav, S.M. Patange, M. Naushad, R.S. Mane, K.H. Kim, The structural and magnetic properties of dual phase cobalt ferrite. Sci. Rep. 7(1), 2524 (2017)

    Google Scholar 

  47. P. Mahajan, A. Sharma, B. Kaur, N. Goyal, S. Gautam, Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum 161, 389–397 (2019)

    CAS  Google Scholar 

  48. C. Murugesan, G. Chandrasekaran, Impact of Gd 3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)

    CAS  Google Scholar 

  49. B. Alshahrani, H.I. ElSaeedy, S. Fares, A.H. Korna, H.A. Yakout, M.I.A.A. Maksoud, R.A. Fahim, M. Gobara, A.H. Ashour, The effect of Ce3+ doping on structural, optical, ferromagnetic resonance, and magnetic properties of ZnFe2O4 nanoparticles. Journal of Materials Science: Materials in Electronics (2020). https://doi.org/10.1007/s10854-020-04856-9

    Article  Google Scholar 

  50. S. Kakade, R. Kambale, C. Ramanna, Y. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er 3+) ion substituted cobalt-rich ferrite (Co 1.1 Fe 1.9–x Er x O 4). RSC Advances 6(40), 33308–33317 (2016)

    CAS  Google Scholar 

  51. S. Bahhar, H. Lemziouka, A. Boutahar, H. Bioud, H. Lassri, E. Hlil, Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2− xLaxO4 (x= 0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites. Chemical Physics Letters 716, 186–191 (2019)

    CAS  Google Scholar 

  52. J.S. Kounsalye, A.V. Humbe, A.R. Chavan, K. Jadhav, Rietveld, cation distribution and elastic investigations of nanocrystalline Li0. 5+ 0.5 xZrxFe2. 5–1.5 xO4 synthesized via sol-gel route. Physica B: Condensed Matter 547, 64–71 (2018)

    CAS  Google Scholar 

  53. S. Chakrabarty, A. Dutta, M. Pal, Effect of yttrium doping on structure, magnetic and electrical properties of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 461, 69–75 (2018)

    CAS  Google Scholar 

  54. D. Karthickraja, S. Karthi, G. Kumar, D. Sardar, G. Dannangoda, K. Martirosyan, E. Girija, Fabrication of core–shell CoFe 2 O 4@ HAp nanoparticles: a novel magnetic platform for biomedical applications. New J. Chem. 43(34), 13584–13593 (2019)

    CAS  Google Scholar 

  55. M. Abd Elkodous, G.S. El-Sayyad, I.Y. Abdelrahman, H.S. El-Bastawisy, F.M. Mosallam, H.A. Nasser, M. Gobara, A. Baraka, M.A. Elsayed, A.I. El-Batal, Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces 180, 411–428 (2019)

    CAS  Google Scholar 

  56. H. Hassan, M.A. Maksoud, L.A. Attia, Assessment of zinc ferrite nanocrystals for removal of 134 Cs and 152+ 154 Eu radionuclides from nitric acid solution. J. Mater. Sci.: Mater. Electron. 31(2), 1616–1633 (2020)

    CAS  Google Scholar 

  57. E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M= Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Google Scholar 

  58. M.I.A. Abdel Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M. Abd Elkodous, A.H. Ashour, A.S. Awed, Unveiling the Effect of Zn2+ Substitution in Enrichment of Structural, Magnetic, and Dielectric Properties of Cobalt Ferrite. Journal of Inorganic and Organometallic Polymers and Materials 30(9), 3709–3721 (2020)

    CAS  Google Scholar 

  59. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)

    CAS  Google Scholar 

  60. M.I.A. Abdel Maksoud, G.S. El-Sayyad, A. Abokhadra, L.I. Soliman, H.H. El-Bahnasawy, A.H. Ashour, Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles. Journal of Materials Science: Materials in Electronics 31(3), 2598–2616 (2020)

    CAS  Google Scholar 

  61. T. Zeehan, S. Anjum, S. Waseem, M. Riaz, R. Zia, Tuning of structural, magnetic and optical properties of silver doped cobalt chromium ferrite ferrites thin film by PLD technique. Digest Journal of Nanomaterials & Biostructures (DJNB) 14(4), 855–866 (2019)

    Google Scholar 

  62. M.A. Maksoud, G.S. El-Sayyad, A.M. El-Khawaga, M. Abd Elkodous, A. Abokhadra, M.A. Elsayed, M. Gobara, L. Soliman, H. El-Bahnasawy, A. Ashour, Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. Journal of Hazardous Materials (2020). https://doi.org/10.1016/j.jhazmat.2020.123000

    Article  Google Scholar 

  63. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016)

    CAS  Google Scholar 

  64. C.-Y. Tsay, Y.-C. Chiu, Y.-K. Tseng, Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles. Physica B 570, 29–34 (2019)

    CAS  Google Scholar 

  65. V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, K. Praveena, Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017)

    CAS  Google Scholar 

  66. L. Gama, E.P. Hernandez, D.R. Cornejo, A.A. Costa, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, Magnetic and structural properties of nanosize Ni–Zn–Cr ferrite particles synthesized by combustion reaction. J. Magn. Magn. Mater. 317(1), 29–33 (2007)

    CAS  Google Scholar 

  67. M.I.A. Abdel Maksoud, G.S. El-Sayyad, M. Abd Elkodous, A.S. Awed, Controllable synthesis of Co1−x MxFe2O4 nanoparticles (M = Zn, Cu, and Mn; x = 0.0 and 0.5) by cost-effective sol–gel approach: analysis of structure, elastic, thermal, and magnetic properties. Journal of Materials Science: Materials in Electronics 31(12), 9726–9741 (2020)

    CAS  Google Scholar 

  68. C. Ni, D. Wu, X. Xie, B. Wang, H. Wei, Y. Zhang, X. Zhao, L. Liu, B. Wang, W. Du, Microwave absorption properties of microporous CoNi@(NiO-CoO) nanoparticles through dealloying. J. Magn. Magn. Mater. 503, 166631 (2020)

    CAS  Google Scholar 

  69. L. Kumar, M. Kar, Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4). Ceram. Int. 38(6), 4771–4782 (2012)

    CAS  Google Scholar 

  70. H. El moussaoui, O. Mounkachi, R. Masrour, M. Hamedoun, E.K. Hlil, A. Benyoussef, Synthesis and super-paramagnetic properties of neodymium ferrites nanorods. Journal of Alloys and Compounds 581, 776–781 (2013)

    CAS  Google Scholar 

  71. M.N. Akhtar, M.A. Khan, M. Ahmad, M. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0. 5− xNi0. 5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. Journal of Magnetism and Magnetic Materials 421, 260–268 (2017)

    CAS  Google Scholar 

  72. S.M. Rathod, A.R. Chavan, S.S. Jadhav, K.M. Batoo, M. Hadi, E.H. Raslan, Ag+ ion substituted CuFe2O4 nanoparticles: Analysis of structural and magnetic behavior. Chem. Phys. Lett. 765, 138308 (2021)

    CAS  Google Scholar 

  73. G. Malich, B. Markovic, C. Winder, The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124(3), 179–192 (1997)

    CAS  Google Scholar 

  74. S. Kanagesan, M. Hashim, S.A.B. Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B. Purna Chandra Rao, , Evaluation of antioxidant and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method. Applied Sciences 6(9), 184 (2016)

    Google Scholar 

  75. K. Karthik, M. Shashank, V. Revathi, T. Tatarchuk, Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Molecular crystals and liquid crystals (2019). https://doi.org/10.1080/15421406.2019.1578495

    Article  Google Scholar 

  76. M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2–2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceramics International 46(6), 7346–7354 (2020)

    CAS  Google Scholar 

  77. L. Horev-Azaria, G. Baldi, D. Beno, D. Bonacchi, U. Golla-Schindler, J.C. Kirkpatrick, S. Kolle, R. Landsiedel, O. Maimon, P.N. Marche, Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part. Fibre Toxicol. 10(1), 1–17 (2013)

    Google Scholar 

  78. F. Ahmad, H. Yao, Y. Zhou, X. Liu, Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: Interaction, adaptation and oxidative stress. Chemosphere 139, 479–485 (2015)

    CAS  Google Scholar 

  79. M. Almessiere, Y. Slimani, S. Rehman, F. Khan, Ç. Güngüneş, S. Güner, S.E. Shirsath, A. Baykal, Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arab. J. Chem. 13(10), 7403–7417 (2020)

    CAS  Google Scholar 

  80. L.N. Lartigue, C. Wilhelm, J. Servais, C.C. Factor, A. Dencausse, J.-C. Bacri, N. Luciani, F. Gazeau, Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. Acs Nano 6(3), 2665–2678 (2012)

    CAS  Google Scholar 

  81. S. Mitamura, H. Ikawa, N. Mizuno, Y. Kaziro, H. Itoh, Cytosolic nuclease activated by caspase-3 and inhibited by DFF-45. Biochem. Biophys. Res. Commun. 243(2), 480–484 (1998)

    CAS  Google Scholar 

  82. J.A. Jacob, J.M.M. Salmani, B. Chen, Magnetic nanoparticles: mechanistic studies on the cancer cell interaction. Nanotechnol. Rev. 5(5), 481–488 (2016)

    CAS  Google Scholar 

  83. V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8), 852–870 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Groups Program under grant number R.G.P.1/168/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. A. Abdel Maksoud.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrani, B., ElSaeedy, H.I., Fares, S. et al. Structural, optical, and magnetic properties of nanostructured Ag-substituted Co-Zn ferrites: insights on anticancer and antiproliferative activities. J Mater Sci: Mater Electron 32, 12383–12401 (2021). https://doi.org/10.1007/s10854-021-05870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05870-1

Navigation