Skip to main content

Advertisement

Log in

An Sr doping 0.65(Bi0.5Na0.5) TiO3-0.35 (Sr0.7+x + Bi0.2) TiO3 ceramic with tunable crystal structures and energy storage performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A group of 0.65(Bi0.5Na0.5)TiO3 -0.35(Sr0.7+x + Bi0.2)TiO3 (BNT-S0.7+xBT) composite ceramic pellets are synthesized using a traditional solid sintering method, where a tunable x, the changeable volume of Sr, is to tailor energy storage through the adjustments of the A-site stoichiometry in BNT-S0.7+xBT. We find that a small excess of Sr2+ ions will result in an extensively tuning on the crystal grain size and even contribute to the A-site disorder and charge fluctuation of BNT-S0.7+xBT. As such, the BNT-S0.7+xBT exhibits a minimum average grain size and a highly compact crystal morphology, and thus, BNT-S0.75BT ceramic exhibits a high dielectric constant (εr) of about 5100 at 110 °C. Meanwhile, a relatively thin polarization–electric field (P–E) loop with a high maximum polarization of 42 μC/cm2 and a low remnant electric polarization of 5 μC/cm2 are obtained in a BNT-S0.75BT pellet under 100 kV/cm, corresponding to an energy density of 0.98 J cm−3 and a good η of 70.7%. Attractively, the maximum polarization (Pm) of BNT-S0.75BT ceramic at 25–100 °C hardly decreases, implying excellent temperature stability of polarization performances under high electric field of 100 kV/cm, which favors the energy storage of relaxor ferroelectric ceramics and is valuable to a supercapacitor serving at evaluated high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  2. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  3. K. Han, Q. Li, C. Chanthad, M.R. Gadinski, G. Zhang, Q. Wang, A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Funct. Mater. 25, 3505–3513 (2015)

    Article  CAS  Google Scholar 

  4. Z.H. Dai, J.L. Xie, W.G. Liu, X. Wang, L. Zhang, Z.J. Zhou, J.L. Li, X.B. Ren, An effective strategy to achieve excellent energy storage properties in lead-free BaTiO3 based bulk ceramics. ACS Appl. Mater. Interfaces 12, 30289–30296 (2020)

    Article  CAS  Google Scholar 

  5. L. Zhang, Y. Pu, M. Chen, R. Li, X. Guo, Y. Cui, Enhanced energy-storage properties of (1–x)Na0.5Bi0.5TiO3-xBaSnO3 ceramics. Ceram. Int. 44, S207–S210 (2018)

    Article  CAS  Google Scholar 

  6. D. P. Zhao, M. Z. Dai, H. Q. Liu, K. F. Chen, X. F. Zhu, D. F. Xue, X. Wu, J. P. Liu, Sulfur‐induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage, Adv. Mater. Interfaces 1901308 (2019)

  7. C. Liu, X. Wu, B. Wang, Performance modulation of energy storage devices: a case of Ni-Co-S electrode materials. Chem. Eng. J. 392, 123651 (2020)

    Article  CAS  Google Scholar 

  8. Y. Zhao, J.F. He, M.Z. Dai, D.P. Zhao, X. Wu, B.D. Liu, Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energ. Chem. 45, 67–73 (2020)

    Article  Google Scholar 

  9. J.J. Li, K. Paisan, K. Han, New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem. Mater. 22, 5350–5357 (2010)

    Article  CAS  Google Scholar 

  10. S.S. Parizi, A. Mellinger, G. Caruntu, Ferroelectric barium titanate nanocubes as cordially, apacitive building best wishes, locks for energy storage applications. ACS Appl. Mater. Interfaces 6, 17506–17517 (2014)

    Article  CAS  Google Scholar 

  11. S. Zinatloo-Ajabshira, M. Mousavi-Kamazanib, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46, 26548–26556 (2020)

    Article  Google Scholar 

  12. S. Zinatloo-Ajabshira, M. Baladib, M. Salavati-Niasarib, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  Google Scholar 

  13. L.M. Chen, N.N. Sun, Y. Li, Q.W. Zhang, L.W. Zhang, X.H. Hao, Multifunctional antiferroelectric MLCC with high-energy-storage properties and large field-induced strain. J. Am. Ceram. Soc. 101, 2313–2320 (2018)

    Article  CAS  Google Scholar 

  14. X.H. Liu, Y. Li, X.H. Hao, Ultra-high energy-storage density and fast discharge speed of (Pb0.98-xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. J. Mater. Chem. A 7, 11858–11866 (2019)

    Article  CAS  Google Scholar 

  15. B. Hitesh, V.N. Singh, B.P. Singh, M. Tomar, V. Gupta, A. Kumar, Room temperature lead-free relaxor-antiferroelectric electroceramics for energy storage applications. RSC Adv. 4, 22840–22847 (2014)

    Article  Google Scholar 

  16. B. Manal, B. Jamal, J. Abdelilah, E.M. Mimoun, Tailoring the dielectric and energy storage properties in BaTiO3/BaZrO3 superlattices. Mater. Lett. 234, 279–282 (2019)

    Article  Google Scholar 

  17. L.M. Chen, X.H. Hao, Q.W. Zhang, S.L. An, Energy-storage performance of PbO-B2O3-SiO2 added (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method. J. Mater. Sci. Mater. Electron. 27, 4534–4540 (2016)

    Article  CAS  Google Scholar 

  18. H.S. Wang, Y.C. Liu, T.Q. Yang, S.J. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019)

    Article  Google Scholar 

  19. L. Zhang, S.L. Jiang, Y. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G.Z. Zhang, Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40, 5455–5460 (2014)

    Article  CAS  Google Scholar 

  20. Z.B. Pan, D. Hu, Y. Zhang, J.J. Liu, B. Shen, J.W. Zhai, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 7, 4072–4078 (2019)

    Article  CAS  Google Scholar 

  21. N.S. Zhao, H.Q. Fan, L. Ning, J.W. Ma, Y.Y. Zhou, Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3- (Sr0.7Bi0.2)TiO3 lead-free ceramics. J. Am. Ceram. Soc. 101, 5578–5585 (2018)

    Article  CAS  Google Scholar 

  22. J. Yin, Y.X. Zhang, X. Lv, J.G. Wu, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A. 6, 9823–9832 (2018)

    Article  CAS  Google Scholar 

  23. Y.P. Pu, L. Zhang, Y.F. Cui, M. Chen, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics. ACS Sustainable Chem. Eng. 6, 6102–6109 (2018)

    Article  CAS  Google Scholar 

  24. F. Li, T. Jiang, J.W. Zhai, B. Shen, H.R. Zeng, Exploring novel bismuth-based materials for energy storage applications. J. Mater. Chem. C 6, 7976–7981 (2018)

    Article  CAS  Google Scholar 

  25. Y.C. Wu, Y.Z. Fan, N.T. Liu, P. Peng, M.X. Zhou, S.G. Yan, F. Cao, X.L. Dong, G.S. Wang, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 6222–6230 (2019)

    Article  CAS  Google Scholar 

  26. J. Yin, H. Tao, G. Liu, J.G. Wu, Domain‐scale imaging to dispel the clouds over the thermal depolarization of Bi0.5Na0.5TiO3‐based relaxor ferroelectrics. J. Am. Ceram. Soc. 103, 1881–1890 (2020)

    Article  CAS  Google Scholar 

  27. H. Tao, H.J. Wu, Y. Liu, Y. Zhang, J.G. Wu, F. Li, X. Lyu, C.L. Zhao, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141, 13987–13994 (2019)

    Article  CAS  Google Scholar 

  28. T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)

    Article  CAS  Google Scholar 

  29. X. Liu, J. Shi, F.Y. Zhu, H.L. Du, T.Y. Li, X.C. Liu, H. Lu, Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J. Materiomics 4, 202–207 (2018)

    Article  Google Scholar 

  30. F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.20.1)TiO3 ergodic relaxor ceramics. Mater. Res. Lett. 6, 345–352 (2018)

    Article  CAS  Google Scholar 

  31. F. Yan, H.B. Yang, Y. Lin, T. Wang, Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem. 56, 13510–13516 (2017)

    Article  CAS  Google Scholar 

  32. J. Wang, C.R. Zhou, Q.N. Li, W.D. Zeng, J.W. Xu, G.H. Chen, C.L. Yuan, G.H. Rao, Dual relaxation behaviors and large electro strictive properties of Bi0.5Na0.5TiO3-Sr0.85Bi0.1TiO3 ceramics. J. Mater. Sci. 53, 8844–8854 (2018)

    Article  CAS  Google Scholar 

  33. C. Ang, Z. Yu, High remnant polarization in (Sr0.7Bi0.2)TiO3-(Na0.5Bi0.5)TiO3 solid solutions. Appl. Phys. Lett. 95, 232908 (2009)

    Article  Google Scholar 

  34. J.A. Sui, H.Q. Fan, B. Hu, L. Ning, High temperature stable dielectric properties and enhanced energy-storage performance of (1-x)(0.85Na0.5Bi0.5TiO3-0.15Ba0.8Ca0.2-Ti0.8Zr0.2O3)-xK0.5Na0.5NbO3 lead-free ceramics. Ceram. Int. 44, 18054–18059 (2018)

    Article  CAS  Google Scholar 

  35. F. Yan, K.W. Huang, T. Jiang, X.F. Zhou, Y.J. Shi, G.L. Ge, B. Shen, J.W. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Stor. Mater. 30, 392–400 (2020)

    Google Scholar 

  36. I.T. Seo, S. Steiner, T. Froemling, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06BaTiO3. J. Eur. Ceram. Soc. 37, 1429–1436 (2017)

    Article  CAS  Google Scholar 

  37. Y. Jung, S.Y. Choi, S.J.L. Kang, Effect of oxygen partial pressure on grain boundary structure and grain growth behavior in BaTiO3. Acta Mater. 54, 2849–2855 (2006)

    Article  CAS  Google Scholar 

  38. S.M. An, S.J.L. Kang, Boundary structural transition and grain growth behavior in BaTiO3 with Nd2O3 doping and oxygen partial pressure change. Acta Mater. 59, 1964–1973 (2011)

    Article  CAS  Google Scholar 

  39. S. Zinatloo-Ajabshir, M. Salavati-Niasar, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemicalassisted route. J. Ind. Eng. Chem. 20, 3313–3319 (2014)

    Article  CAS  Google Scholar 

  40. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J. Mater. Sci. 26, 5812–5821 (2015)

    CAS  Google Scholar 

  41. N. Zhao, H. Fan, L. Ning, J. Ma, Y. Zhou, Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics. J. Am. Ceram. Soc. 101, 5578–5585 (2018)

    Article  CAS  Google Scholar 

  42. Y. Pu, L. Zhang, Y. Cui, M. Chen, High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics. ACS Sustain. Chem. Eng. 6, 6102–6109 (2018)

    Article  CAS  Google Scholar 

  43. T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A. 5, 554–563 (2017)

    Article  CAS  Google Scholar 

  44. H.Y. He, W.H. Lu, J.A.S. Oh, Z.R. Li, X. Lu, K.Y. Zeng, L. Lu, Probing the coexistence of ferroelectric and relaxor state in Bi0.5Na0.5TiO3-based ceramics for enhanced piezoelectric performance. ACS Appl. Mater. Interfaces 12, 30548–30556 (2020)

    Article  CAS  Google Scholar 

  45. C. Groh, D.J. Franzbach, W. Jo, K.G. Webber, J. Kling, L.A. Schmitt, H.J. Kleebe, S.J. Jeong, J.S. Lee, J. Rodel, Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv. Func. Mater. 24, 356–362 (2014)

    Article  CAS  Google Scholar 

  46. H.B. Zhang, C. Groh, Q. Zhang, W. Jo, K.G. Webber, J. Rodel, Large strain in relaxor/ferroelectric composite lead-free piezoceramics. Adv. Elec. Mater. 1, 1500018 (2015)

    Article  Google Scholar 

  47. D.E. Dausch, E. Furman, F. Wang, G.H. Haertling, PLZT-based multilayer composite thin films. I. Experimental investigation of composite film structures. Ferroelec. 177, 221–236 (1996)

    Article  CAS  Google Scholar 

  48. X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.J. Kleebe, J. Rodel, Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics. J. Appl. Phys. 106, 044107 (2009)

    Article  Google Scholar 

  49. R. Dittmer, K.G. Webber, E. Aulbach, W. Jo, X.L. Tan, J. Roedel, Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress. Acta Mater. 61, 1350–1358 (2013)

    Article  CAS  Google Scholar 

  50. A. Ayrikyan, O. Prach, N.H. Khansur, S. Keller, S. Yasui, M. Itoh, O. Sakata, K. Durst, K.G. Webber, Investigation of residual stress in lead-free BNT-Based ceramic/ceramic composites. Acta Mater. 148, 432–441 (2018)

    Article  CAS  Google Scholar 

  51. B.B. Liu, X.H. Wang, R.X. Zhang, L.T. Li, Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics. J. Am. Ceram. Soc. 100, 3599–3607 (2017)

    Article  CAS  Google Scholar 

  52. L.W. Wu, X.H. Wang, H.L. Gong, Y.N. Hao, Z.B. Shen, L.T. Li, Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency. J. Mater. Chem. C 3, 750–758 (2015)

    Article  CAS  Google Scholar 

  53. G. Liu, L.Y. Zhang, Q.K. Wu, Z.Y. Wang, Y. Li, D.Q. Li, H.B. Liu, Y. Yan, Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 29, 18859–18867 (2018)

    Article  CAS  Google Scholar 

  54. R. Ma, B. Cui, M.Q. Shangguan, S.H. Wang, Y.J. Wang, Z.G. Chang, Y.Y. Wang, A novel double-coating approach to prepare fine-grained BaTiO3@La2O3@SiO2 dielectric ceramics for energy storage application. J. Alloys Compd. 690, 438–445 (2017)

    Article  CAS  Google Scholar 

  55. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, Structure, dielectric, ferroelectric, and energy density properties of (1–x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 48, 2151–2157 (2013)

    Article  CAS  Google Scholar 

  56. J.P. Huang, J.H. Zhang, H. Yu, M. Wei, H.W. Chen, C.R. Yang, Improvement of dielectric and energy storage properties in BaTiO3 ceramics with BiNbO4 modified. Ferroelectrics 510, 8–15 (2017)

    Article  CAS  Google Scholar 

  57. X.B. Zhao, Z.Y. Zhou, R.H. Liang, F.H. Liu, X.L. Dong, High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O-3 relaxor ceramics for temperature stability applications. Ceram. Int. 43, 9060–9066 (2017)

    Article  CAS  Google Scholar 

  58. F. Si, B. Tang, Z.X. Fang, S.R. Zhang, Structural and dielectric relaxor properties of (1–x)BaTiO3-xBi(Zn1/2Zr1/2)O-3 ceramics for energy storage applications. J. Mater. Sci. Mater. Electron. 30, 2772–2782 (2019)

    Article  CAS  Google Scholar 

  59. Q. Xu, M.T. Lanagan, X.C. Huang, J. Xie, L. Zhang, H. Hao, H.X. Liu, Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram. Int. 42, 9728–9736 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (NSFC51773168), NSFC of Shaanxi province (2020JM-465), and by the Xian project servicing for enterprise. (2019217814GXRC014CG015-GXYD14.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xia, W., Li, Z. et al. An Sr doping 0.65(Bi0.5Na0.5) TiO3-0.35 (Sr0.7+x + Bi0.2) TiO3 ceramic with tunable crystal structures and energy storage performances. J Mater Sci: Mater Electron 32, 12139–12150 (2021). https://doi.org/10.1007/s10854-021-05842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05842-5

Navigation