Skip to main content

Advertisement

Log in

A tunable B-site doping SBT-BNT-SMN ceramic composite with high recoverable energy density and temperature stability

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We synthesize a group of three-phase ferroelectric ceramics 0.35(Sr0.7Bi0.2) TiO3–0.65(Bi0.5Na0.5)TiO3–xSr(Mg1/3Nb2/3)O3 (BST–BNT–xSMN) using conventional solid-phase sintering method. When tunning the volume of SMN to 0.01, the ceramic sheet shows homogeneous microcrystal grains and highly dense crystal morphology, which favors a reductive dielectric permittivity (εr) of 2250 and loss of 0.05. Under a high electric field of 100 kV cm−1, the BST–BNT-0.01SMN sample achieves a slender polarization versus electrical field (P–E) loop with saturation and residual polarization of 37.1 µC cm−2 and 3.0 µC cm−2, respectively, corresponding to a high energy density of 1.32 J cm−3 and a large η of 81%. Strikingly, the BST–BNT–xSMN ceramics show the excellent temperature stability below 100 °C, which facilitates energy storage in relaxed ferroelectric ceramics and provides an efficient method for obtaining pulsed power capacitors with excellent energy-recoverable characteristics and high efficiency in BNT-based ceramics.

Graphical abstract

The three-phase ferroelectric ceramics 0.35(Sr0.7Bi0.2)TiO3- 0.65(Bi0.5Na0.5)TiO3-xSr(Mg1/3Nb2/3)O3 (BST- BNT- xSMN) possesses a slender polarization versus electrical field loop with saturation and residual polarization of 37.1 µC cm-2 and 3.0 µC cm-2 respectively at 100 kV cm-1, which corresponds to a high energy density of 1.32 J cm-3 and a large η of 81%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang TC, Chung M (2007) Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss. Macromol 40:3

    Article  Google Scholar 

  2. Prateek VK, Thakur RK, Gupta (2016) Recent progress on ferroelectric polymer-based nano composites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    Article  CAS  Google Scholar 

  3. Dong X, Li X, Chen X, Chen H, Sun C, Shi J, Pang F, Zhou H (2020) High energy storage and ultrafast discharge in NaNbO3-based lead-free dielectric capacitors via a relaxor strategy-science direct. Ceram Int 47:3079–3088

    Article  Google Scholar 

  4. Wang T, Jin L, Li C, Hu Q, Wei X (2015) Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 98:559–566

    Article  CAS  Google Scholar 

  5. Gao W, Lu Y, Wang Y, Yuan G, Liu JM (2017) Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability. Adv Electron Mater 3:1600542

  6. Wang H, Liu Y, Yang T, Zhang S (2019) Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv Funct Mater 29: 1807321.14

  7. Qi H, Zuo RZ, Xie AW, Tian A, Fu J, Zhang Y, Zhang SJ (2019) Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 35:1903877

    Article  Google Scholar 

  8. Liao Y, Wang D, Wang H, Wang T, Wei X, Zheng Q, Jie W, Lin DM (2019) LinDefect-induced transformation between hardening and softening behaviors in CuF2-doped K0.5Na0.5NbO3 piezoceramics, Ceram Int 45: 2644–2652

  9. Yan K, Wang F, Chen X, Wu D, Zhu KJ (2019) Effects of A-site ionic size on the phase transition behavior of lead-free niobate ceramics. Ceram Int 16:20323–20330

    Article  Google Scholar 

  10. Liao Y, Wang D, Wang H, Wang T, Zheng QJ, Yang JH, Kwokc KW, Lin DM (2019) Transformation of hardening to softening behaviors induced by Sb substitution in CuO-doped KNN-based piezoceramics. Ceram Int 45:13179–13186

    Article  CAS  Google Scholar 

  11. Shen Z, Wang J, Jiang J, Huang SX, Lin YH, Nan CW, Chen LQ, Shen Y (2019) Phase-field modeling, and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat Commun 10:1843

    Article  Google Scholar 

  12. Dang ZM, Yuan JK, Zha JW, Zhou T, Hu GH (2011) Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog Mater Sci 57:660–723

    Article  Google Scholar 

  13. Pan Z, Wang M, Chen J, Shen B, Liu J, Zhai J (2018) Largely enhanced energy storage capability of a polymer nanocomposite utilizing a core-satellite strategy. Nanoscale 10:16621–16629

    Article  CAS  Google Scholar 

  14. Qi X, Liu H, Lin Z, Xie J, Hua H, Cao M, Yao Z, Lanagan MT (2016) Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications, RSC Adv. 6: 59280–59291

  15. Lin D, Kwok KW, Chan HLW (2009) Ferroelectric, and piezoelectric properties of Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 lead-free ceramics, J. Alloy. Compd. 481: 310–315

  16. Yao Z, Song Z, Hao H, Yu Z, Liu H (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29:1601727

    Article  Google Scholar 

  17. Li WB, Zhou D, Pang LX, Xu R, Guo HH (2017) Novel barium titanate based capacitors with high energy density and fast discharge performance. J Mater Chem A 5:19607–19612

    Article  CAS  Google Scholar 

  18. Gao W, Yao M, Yao X (2018) Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO3 thin film. ACS Appl Mater Interfaces 10:28745–28753

    Article  CAS  Google Scholar 

  19. Shen Y, Hu Y, Chen W, Wang J, Guan Y, Du J, Zhang X, Ma J, Li M, Lin Y (2015) Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites, Nano Energy. 18: 176–186

  20. Chandrasekhar M, Kumar P (2015) Synthesis, and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram Int 41:5574–5580

    Article  CAS  Google Scholar 

  21. Zhao L, Liu Q, Gao J, Zhang SJ, Li JF (2017) Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 29:1701824

    Article  Google Scholar 

  22. Yang H, Yan F, Lin Y, Wang T, Wang F (2017) High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Rep 7:8726

    Google Scholar 

  23. Li TY, Li TY, Lou XJ, Ke XQ, Cheng SD, Mi SB (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics, Acta Materialia. 128: 337–344

  24. Wu J, Mahajan A, Riekehr L, Zhang H, Yang B, Meng N, Zhang Z, Yan H (2018) Perovskite Srx(Bi1−xNa0.97–xLi0.03)0.5TiO3 ceramics with polar nanoregions for high power energy storage, Nano Energy 50: 723–732

  25. Liu L, Knapp M, Ehrenberg H, Fang L, Schmitt LA, Fuess H, Hoelzel H, Hinterstein M (2016) The phase diagram of K0.5Na0.5NbO3-Bi1/2Na1/2TiO3, J Appl Crystallogr 49: 574–584

  26. Liu L, Knapp M, Ehrenberg H, Liang F, Hinterstein M (2017) Local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi1/2Na1/2TiO3system, J Eur Ceram Soc 37: 1387–1399

  27. Yu ZL, Liu YF, Shen MY, Qian H, Li F, Yu YL (2017) Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics, Ceram. Int. 43: 7653–7659

  28. Chandrasekhar M, Sonia P (2016) Kumar, Synthesis and characterizations of NaNbO3 modified BNT-BT-BKT ceramics for energy storage applications. Physica B 497:59–66

    Article  CAS  Google Scholar 

  29. Ren P, Liu Z, Wang X, Duan Z, Wan Y, Yan F, Zhao G (2018) Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3-Sr0.8Bi0.10.1TiO3 based ceramics, J Alloys Compd 742: 683–689

  30. Yan F, Yang HB, Lin Y, Wang T (2017) Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications, Inorg Chem 56: 13510–13516

  31. Wang J, Zhou CR, Li QN, Zeng WD, Xu JW, Chen GH, Yuan CL, Rao GH (2018) Dual relaxation behaviors and large electro strictive properties of Bi0.5Na0.5TiO3-Sr0.85Bi0.1TiO3 ceramics, J Mater Sci 53: 8844–8854. https://doi.org/10.1007/s10853-018-2186-7

  32. Ang C, Yu Z (2009) High remnant polarization in (Sr0.7Bi0.2)TiO3-(Na0.5Bi0.5)TiO3 solid solutions, Appl Phys Lett 95: 232908

  33. Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, Xing S, Zhai J, Fu Q, Liu J (2020) Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J Mater Chem C 8:591–601

    Article  CAS  Google Scholar 

  34. A YY, B YZ, Ying ZA, Hao LA, A QZ, A YL (2020) High-temperature energy storage performances in (1-x)(Na0.50 Bi0.50 TiO3 )- x BaZrO3 lead-free relaxor ceramics, Ceram Int 46: 28652–28658

  35. Boonlakhorn J, Thongbai P, Putasaeng B, Yamwong T, Maensiri S (2014) Very high-performance dielectric properties of Ca13x/2YbxCu3Ti4O12 ceramics. J Alloys Compd 612:103–109

    Article  CAS  Google Scholar 

  36. Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J (2019) Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 7:4072–4078

    Article  CAS  Google Scholar 

  37. Peng ZAB, B BTA, Feng SAB, B CYA, Hao LC, B SZA (2020) Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency - ScienceDirect, J Eur Ceram Soc 40: 1938–1946

  38. Qiao Zhang X, Wu. D, Chen B, Yang Z (2020) Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics, Chem Eng J 388: 124158

  39. Pu Y, Zhang L, Cui Y (2018) High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics, ACS Sustainable Chem. Eng. 6: 6102–6109

  40. He HY, Lu WH, Oh JAS, Li ZR, Lu X, Zeng KY, Lu L (2020) Probing the coexistence of ferroelectric and relaxor state in Bi0.5Na0.5TiO3-based ceramics for enhanced piezoelectric performanc, ACS Appl Mater Interfaces 12: 30548–30556

  41. Yan B, Fan H, Wang C, Zhang M, Yadav AK, Zheng X, Wang H, Du Z (2020) Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 lead-free ceramics, Ceram Int 46: 281–288

  42. Cao WP, Li WL, Dai XF, Zhang TD, Fei WD (2016) Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J Eur Ceram Soc 36:593–600

    Article  CAS  Google Scholar 

  43. Li QN, Zhou CR, Xu JW, Yang L, Zhang X, Zeng WD, Yuan CL, Chen GH, Rao GH (2016) Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics, J Electron Mater 45: 5146–5151

  44. Xu Q, Liu HX, Zhang L, Xie J, Hua H, Cao M, Yao Z, Lanagan MT (2016) Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications, RSC Adv 6: 59280–59291

  45. Xu Q, Lanagan MT, Huang X, Xie J, Zhang L, Hao H, Liu H (2016) Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram Int 42:9728–9736

    Article  CAS  Google Scholar 

  46. Dong G, Fan H, Jia Y, Liu H (2020) Dielectric temperature stability and energy storage performance of B-site Sn4+-doped BNKBST ceramics. J Mater Sci-Mater El 31:13620–13627

    Article  CAS  Google Scholar 

  47. Pang S, Yang L, Qin J, Qin H, Xie H, Wang H, Zhou C, Xu J (2019) Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT-BT ceramics, Appl Phys A-Mater 125: 119

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (NSFC51773168), and by the Xian project servicing for enterprise. (2020KJRC0079)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Xia.

Ethics declarations

Conflict of interest

Yannan Liang, Weimin Xia, Zhizhong Li, Yiming Liu, Danfeng Lu, Yan Feng, and Junhong Xing declare that they have no conflict of interest.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Xia, W., Li, Z. et al. A tunable B-site doping SBT-BNT-SMN ceramic composite with high recoverable energy density and temperature stability. J Mater Sci 56, 19564–19576 (2021). https://doi.org/10.1007/s10853-021-06480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06480-2

Navigation