Skip to main content
Log in

Investigations of some physical properties of ALD growth ZnO films: effect of crystal orientation on photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO films have great application potentials from optoelectronic devices to photocatalysis. Detailed film properties and relations between photocatalytic activities of annealed ZnO films grown on glass and corning glass substrates by Atomic Layer Deposition Technique (ALD) were reported in the current study. The structural evolutions were investigated by X-ray diffraction. Results showed that crystal orientations are strongly dependent on substrate materials. The optical band gap values of all films change between 3.26 and 3.24 eV with annealing. Lower electrical resistivity values were obtained for as-grown films. The morphological properties of the films were investigated by atomic force microscopy. In addition, the highest value of photoactivity was determined for ZnO films grown on corning glass substrate and annealed at 600 °C with a value of 53%. Relations between crystal orientations and photocatalytic activities showed that the crystal orientations, crystallite sizes, peak intensities, and dislocation density values are highly effective on photoactivities of ZnO films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Superlattices Microstruct. 34(1–2), 3–32 (2003). https://doi.org/10.1016/S0749-6036(03)00093-4

    Article  CAS  Google Scholar 

  2. R. Triboulet, J. Perrière, Epitaxial growth of ZnO films. Prog. Cryst. Growth Charact. Mater. 42(3), 65–138 (2003). https://doi.org/10.1016/j.pcrysgrow.2005.01.003

    Article  CAS  Google Scholar 

  3. T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, 35–44 (2005). https://doi.org/10.1088/0268-1242/20/4/004

    Article  CAS  Google Scholar 

  4. A. Di Mauro, M. Cantarella, G. Nicotra, V. Privitera, G. Impellizzeri, Low temperature atomic layer deposition of ZnO: applications in photocatalysis. Appl. Catal. B 196, 68–76 (2016). https://doi.org/10.1016/j.apcatb.2016.05.015

    Article  CAS  Google Scholar 

  5. V.A. Coleman, C. Jagadish, Basic properties and applications of ZnO, in Zinc Oxide Bulk Thin Films and Nanostructures. (Elsevier, Amsterdam, 2006), pp. 1–20

    Google Scholar 

  6. Z.S. Wang et al., A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem. Mater. 13(2), 678–682 (2001). https://doi.org/10.1021/cm000230c

    Article  CAS  Google Scholar 

  7. Z. Szabó et al., Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers. Appl. Surf. Sci. 379, 304–308 (2016). https://doi.org/10.1016/j.apsusc.2016.04.081

    Article  CAS  Google Scholar 

  8. S.M. Sultan et al., Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications. Microelectron. Eng. 97, 162–165 (2012). https://doi.org/10.1016/j.mee.2012.04.019

    Article  CAS  Google Scholar 

  9. X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102(2), 248–252 (2004). https://doi.org/10.1016/j.snb.2004.04.080

    Article  CAS  Google Scholar 

  10. M. Willander et al., Zinc oxide nanorod based photonic devices: recent progress in growth, lightemitting diodes and lasers. Nanotechnology 20(33), 332001 (2009). https://doi.org/10.1088/0957-4484/20/33/332001

    Article  CAS  Google Scholar 

  11. A. Di Mauro, M.E. Fragalà, V. Privitera, G. Impellizzeri, ZnO for application in photocatalysis: from thin films to nanostructures. Mater. Sci. Semicond. Process. 69, 44–51 (2017). https://doi.org/10.1016/j.mssp.2017.03.029

    Article  CAS  Google Scholar 

  12. H. Lachheb et al., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 39(1), 75–90 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  13. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792–820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  14. J.S. Chang, J. Strunk, M.N. Chong, P.E. Poh, J.D. Ocon, Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: what is the fundamental factor that determines photoactivity in ZnO. J. Hazard. Mater. 381, 120958 (2020). https://doi.org/10.1016/j.jhazmat.2019.120958

    Article  CAS  Google Scholar 

  15. R. Boppella, K. Anjaneyulu, P. Basak, S.V. Manorama, Facile synthesis of face oriented ZnO crystals: tunable polars and shape induced enhanced photocatalytic performance. J. Phys. Chem. C 117(9), 4597–4605 (2013). https://doi.org/10.1021/jp311443s

    Article  CAS  Google Scholar 

  16. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131(35), 12540–12541 (2009). https://doi.org/10.1021/ja9052703

    Article  CAS  Google Scholar 

  17. G.R. Li, T. Hu, G.L. Pan, T.Y. Yan, X.P. Gao, H.Y. Zhu, Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 112(31), 11859–11864 (2008). https://doi.org/10.1021/jp8038626

    Article  CAS  Google Scholar 

  18. T. Srinivasulu, K. Saritha, K.T.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Mod. Electron. Mater. 3(2), 76–85 (2017). https://doi.org/10.1016/j.moem.2017.07.001

    Article  Google Scholar 

  19. N. Kaneva, I. Stambolova, V. Blaskov, Y. Dimitriev, A. Bojinova, C. Dushkin, A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol–gel method. Surf. Coat. Technol. 207, 5–10 (2012). https://doi.org/10.1016/j.surfcoat.2011.10.020

    Article  CAS  Google Scholar 

  20. A. Ali, R. Jamal, W. Shao, A. Rahman, Y. Osman, T. Abdiryim, Structure and properties of solid-state synthesized poly(3,4-propylenedioxythiophene)/nano-ZnO composite. Prog. Nat. Sci. Mater. Int. 23(6), 524–531 (2013). https://doi.org/10.1016/j.pnsc.2013.11.00

    Article  Google Scholar 

  21. H.I. Efkere, A. Tataroglu, S.S. Cetin, N. Topaloglu, M.P. Gonullu, H. Ates, The effect of thickness on the optical, structural and electrical properties of ZnO thin film deposited on n-type Si. J. Mol. Struct. 1165, 376–380 (2018). https://doi.org/10.1016/j.molstruc.2018.04.022

    Article  CAS  Google Scholar 

  22. H. Sato, T. Minami, T. Miyata, S. Takata, M. Ishii, Transparent conducting ZnO thin films prepared on low temperature substrates by chemical vapour deposition using Zn(C5H7O2)2. Thin Solid Films 246(1–2), 65–70 (1994). https://doi.org/10.1016/0040-6090(94)90733-1

    Article  CAS  Google Scholar 

  23. O.A. Fouad, A.A. Ismail, Z.I. Zaki, R.M. Mohamed, Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity. Appl. Catal. B 66(1–2), 144–149 (2006). https://doi.org/10.1016/j.apcatb.2005.07.006

    Article  CAS  Google Scholar 

  24. A. Singh, A. Mathur, D. Pal, A. Sengupta, R. Singh, S. Chattopadhyay, Near room temperature atomic layer deposition of ZnO thin films on poly (methyl methacrylate) (PMMA) templates: a study of structure, morphology and photoluminescence of ZnO as an effect of template confinement. Vacuum 161, 398–403 (2019). https://doi.org/10.1016/j.vacuum.2019.01.006

    Article  CAS  Google Scholar 

  25. J.Y. Lim et al., Homogeneous 2D MoTe2 p–n junctions and CMOS inverters formed by atomic-layer-deposition-induced doping. Adv. Mater. 29(30), 1701798 (2017). https://doi.org/10.1002/adma.201701798

    Article  CAS  Google Scholar 

  26. C. Bae, H. Shin, K. Nielsch, Surface modification and fabrication of 3D nanostructures by atomic layer deposition. MRS Bull. 36(11), 887 (2011). https://doi.org/10.1557/mrs.2011.264

    Article  CAS  Google Scholar 

  27. A.D. McNaught, A.Wilkinson, Compendium of Chemical Terminology: IUPAC Recommendations, 2nd ed., Blackwell, Malden, 1997

  28. J.M. Myoung, W.H. Yoon, D.H. Lee, I. Yun, S.H. Bae, S.Y. Lee, Effects of thickness variation on properties of ZnO thin films grown by pulsed laser deposition. Jpn. J. Appl. Phys. 41(1R), 28 (2002). https://doi.org/10.1143/JJAP.41.28

    Article  CAS  Google Scholar 

  29. H. Ennaceri et al., Influence of stress on the photocatalytic properties of sprayed ZnO thin films. Sol. Energy Mater. Sol. Cells 201, 110058 (2019). https://doi.org/10.1016/j.solmat.2019.110058

    Article  CAS  Google Scholar 

  30. C.S. Barrett, T.B. Massalski, Structure of Metals (Pergamon, Oxford, 1980).

    Google Scholar 

  31. J.P. Nair, R. Jayakrishnan, N.B. Chaure, R.K. Pandey, In situ Sb-doped CdTe films. Semicond. Sci. Technol. 13(3), 340 (1998). https://doi.org/10.1088/0268-1242/13/3/002

    Article  CAS  Google Scholar 

  32. R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-Barrado, F. Martín, The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis. Thin Solid Films 515(4), 1942–1949 (2006). https://doi.org/10.1016/j.tsf.2006.07.152

    Article  CAS  Google Scholar 

  33. O. Vigil, F. Cruz, A. Morales-Acevedo, G. Contreras-Puente, L. Vaillant, G. Santana, Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Mater. Chem. Phys. 68(1–3), 249–252 (2001). https://doi.org/10.1016/S0254-0584(00)00358-8

    Article  CAS  Google Scholar 

  34. F. Atay, I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, Optical, structural and surface characterization of CdO:Mg films. J. Mater. Sci. Mater. Electron. 22(5), 492–498 (2011). https://doi.org/10.1007/s10854-010-0166-z

    Article  CAS  Google Scholar 

  35. W. Callister, Materials Science and Engineering: An Introduction (Wiley, Ne York, 2007).

    Google Scholar 

  36. S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salem, L. Pichon, F.M. El-Hossary, Effect of rf plasma nitriding time on electrical and optical properties of ZnO thin films. J. Phys. Chem. Solids 67(11), 2351–2357 (2006). https://doi.org/10.1016/j.jpcs.2006.05.048

    Article  CAS  Google Scholar 

  37. F.M. El-Hossary, S.H. Mohamed, E.A. Noureldein, M.A. El-Kassem, Influence of rf power on growth, structural and optical properties of ZnO synthesized via vapor transport in inductively coupled plasma. Mater. Sci. Semicond. Process. 120, 105284 (2020). https://doi.org/10.1016/j.mssp.2020.105284

    Article  CAS  Google Scholar 

  38. R. Hussin, K.L. Choy, X. Hou, Deposited TiO2 thin films by atomic layer deposition (ALD) for optical properties. ARPN J. Eng. Appl. Sci. 1133, 352–356 (2015)

    Google Scholar 

  39. M.A. Awad, E.M.M. Ibrahim, A.M. Ahmed, One step syntheses of S incorporated ZnO nanowires for photocatalysis applications. Eur. Phys. J. Appl. Phys. 72(3), 30303 (2015). https://doi.org/10.1051/epjap/2015150257

    Article  CAS  Google Scholar 

  40. S.H. Mohamed, Synthesis, structural and ellipsometric evaluation of oxygen-deficient and nearly stoichiometric zinc oxide and indium oxide nanowires/nanoparticles. Philos. Mag. 91(27), 3598–3612 (2011). https://doi.org/10.1080/14786435.2011.588185

    Article  CAS  Google Scholar 

  41. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(2–3), 520–529 (2009). https://doi.org/10.1016/j.jhazmat.05.039

    Article  CAS  Google Scholar 

  42. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31(2), 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

  43. R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, S.H. Kim, Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram. Int. 41(6), 7773–7782 (2015). https://doi.org/10.1016/j.ceramint.2015.02.110

    Article  CAS  Google Scholar 

  44. J. Hu, N. You, Z. Yu, G. Zhou, X. Xu, Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis. J. Appl. Phys. 120(7), 074301 (2016). https://doi.org/10.1063/1.4961036

    Article  CAS  Google Scholar 

  45. P. Raizada, A. Sudhaik, P. Singh, Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater. Sci. Energy Technol. 2(3), 509–525 (2019). https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  46. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes inaqueous solution: kinetic and mechanistic investigations. Appl. Catal. B 49, 1–14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  47. M.S. Cergel, E. Demir, F. Atay, The effect of the structural, optical and surface properties of anatase-TiO2 film on photocatalytic degradation of methylene blue organic contaminant. Ionics 25(9), 4481–4492 (2019). https://doi.org/10.1007/s11581-019-02986-7

    Article  CAS  Google Scholar 

  48. M.S. Cergel, F. Atay, The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst. Ionics 25, 3823–3836 (2019). https://doi.org/10.1007/s11581-019-02941-6

    Article  CAS  Google Scholar 

  49. Y.Q. Cao et al., Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue. Nanotechnology 26(2), 024002 (2015). https://doi.org/10.1088/0957-4484/26/2/024002

    Article  CAS  Google Scholar 

  50. V. Rogé et al., Improvement of the photocatalytic degradation property of atomic layer deposited ZnO thin films: the interplay between film properties and functional performances. J. Mater. Chem. A 3(21), 11453–11461 (2015). https://doi.org/10.1039/c5ta01637a

    Article  Google Scholar 

  51. W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo, Y. Zhang, Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods. J. Hazard. Mater. 152, 172–175 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.082

    Article  CAS  Google Scholar 

  52. K.H. Park et al., Effects of atomic layer deposition conditions on the formation of thin ZnO films and their photocatalytic characteristics. Ceram. Int. 45(15), 18823–18830 (2019). https://doi.org/10.1016/j.ceramint.2019.06.115

    Article  CAS  Google Scholar 

  53. K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl. Sci. 1(10), 1247 (2019). https://doi.org/10.1007/s42452-019-1279-5

    Article  CAS  Google Scholar 

  54. K.A. Adegoke, M. Iqbal, H. Louis, O.S. Bello, Synthesis, characterization and application of CdS/ZnO nanorod heterostructure for the photodegradation of Rhodamine B dye. Mater. Sci. Energy Technol. 2(2), 329–336 (2019). https://doi.org/10.1016/j.mset.2019.02.008

    Article  Google Scholar 

  55. X. Bai et al., Defective crystal plane-oriented induced lattice polarization for the photocatalytic enhancement of ZnO. CrystEngComm 22(16), 2709–2717 (2020). https://doi.org/10.1039/c9ce01966a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted in the Laboratory supported by Gazi University Scientific Research Project Unit (BAP) under the Project Number of 07/2015-08 and 07/2019-05. Authors also would like to thanks The Scientific and Technological Research Council of Turkey for 2219 support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Polat Gonullu.

Ethics declarations

Conflict of interest

Authors declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Also, authors agree that we will not use any confidential information obtained from our activities with Ionics to further our own or other financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat Gonullu, M., Soyleyici Cergel, M., Efkere, H.I. et al. Investigations of some physical properties of ALD growth ZnO films: effect of crystal orientation on photocatalytic activity. J Mater Sci: Mater Electron 32, 12059–12074 (2021). https://doi.org/10.1007/s10854-021-05835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05835-4

Navigation