Skip to main content

Doped ZnO Thin Films Properties/Spray Pyrolysis Technique

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

In this contribution, the effect of different dopants (Al, Sn, and Cu) on the structure, texture and optical properties of ZnO thin films was investigated. Al-doped ZnO (AZO), Sn-doped ZnO (TZO) and Cu-doped ZnO (CZO) thin films are synthesized by chemical spray pyrolysis technique on glass substrates. The so-obtained films crystallized in hexagonal wurtzite polycrystalline structure. The pole figures show that all the thin films have (0002) as the preferred orientation along the c-axis with the highest level was obtained in TZO thin film. The morphology film was significantly affected by the doping type. The transmittance spectra of all the films point out highly transparent in the visible range with an average transmittance higher than 80% for TZO and AZO films but with an average transmittance equal to about 70% for CZO film. Furthermore, the optical bandgap values were determined by the Tauc's law and were found to be 3.30 eV, 3.28 eV and 3.27 eV for AZO, TZO, and CZO thin films, respectively. The Urbach energy of the films was also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, C.Y., Zhang, B.P., Lu, Z.W., Binh, N.T., Wakatsuki, K., Segawa, Y., Mu, R.: Fabrication and characterization of ZnO film based UV photodetector. J. Mater. Sci.: Mater. Electron. 20, 197–201 (2009). https://doi.org/10.1007/s10854-008-9698-x

    Google Scholar 

  2. Szarko, J.M., Song, J.K., Blackledge, C.W., Swart, I., Leone, S.R., Li, S., Zhao, Y.: optical injection probing of single zno tetrapod lasers. Chem. Phys. Lett. 404, 171–176 (2005). https://doi.org/10.1016/j.cplett.2005.01.063

    Article  CAS  Google Scholar 

  3. Ki Shin, B., Lee, T.I., Xiong, J., Hwang, C., Noh, G., Cho, J.H., Myoung, J.M.: Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells, Sol. Energy Mater. Sol. Cells, 95, 2650–2654 (2011). https://doi.org/10.1016/j.solmat.2011.05.033

    Article  CAS  Google Scholar 

  4. Peng, L., Xie, T.F., Yang, M., Wang, P., Xu, D., Pang, S., Wang, D.J.: Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature. Sens. Actuators B: Chem. 131, 660–664 (2008). https://doi.org/10.1016/j.snb.2007.12.060

    Article  CAS  Google Scholar 

  5. Wahab, R., Kaushik, N.K., Verma, A.K., Mishra, A., Hwang, I.H., Yang, Y.B., Shin, H.S., Kim, Y.S.: Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. J. Biol. Inorg. Chem. 16, 431–442 (2011). https://doi.org/10.1007/s00775-010-0740-0

    Article  CAS  Google Scholar 

  6. Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications J. Phys.: Condens. Matter. 16, R829–R858 (2004). https://doi.org/10.1088/0953-8984/16/25/R01

    CAS  Google Scholar 

  7. Yang, J., Lee, J., Kim, K., Lim, S.: Influence of Sn-doping in hydrothermal methods on the optical property of the ZnO nanorods. Physi. E 42, 51–56 (2009). https://doi.org/10.1016/j.physe.2009.08.018

    Article  CAS  Google Scholar 

  8. Ozgur, U., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doan, S., Avrutin, V., Cho, S.-J., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  9. Zamfirescu, M., Kavokin, A., Gil, B., Malpuech, G., Kaliteevski, M.: ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Phys. Rev. B 65, 161205 (2002). https://doi.org/10.1103/PhysRevB.65.161205

    Article  CAS  Google Scholar 

  10. Saravanakumar, K., Ravichandran, K., Chandramohan, R., Gobalakrishnan, S.: Investigation on simultaneous doping of Sn and F with ZnO nanopowders synthesized using a simple soft chemical route. Superlattice. Microstruct. 52, 528–540 (2012). https://doi.org/10.1016/j.spmi.2012.06.003

    Article  CAS  Google Scholar 

  11. Kim, ChE, Moon, P., Kim, S., Myoung, J.M., Jang, H.W., Bang, J., Yun, I.: Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films. Thin Solid Films 518, 6304–6307 (2010). https://doi.org/10.1016/j.tsf.2010.03.042

    Article  CAS  Google Scholar 

  12. Mariappan, R., Ponnuswamy, V., Suresh, P.: Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattice. Microstruct. 52, 500–513 (2012). https://doi.org/10.1016/j.spmi.2012.05.016

    Article  CAS  Google Scholar 

  13. Bouderbala, M., Hamzaoui, S., Amrani, B., Reshak, A.H., Adnane, M., Sahraoui, T., Zerdali, M.: Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys. B 403, 3326–3330 (2008). https://doi.org/10.1016/j.physb.2008.04.045

    Article  CAS  Google Scholar 

  14. Bedia, A., Bedia, F.Z., Aillerie, M., Maloufi, N., Ould Saad Hamady, S., Perroud, O., Benyoucef, B.: Optical, electrical and structural properties of nano-pyramidal ZnO films grown on glass substrate by spray pyrolysis technique. Opt. Mater. 36(7), 1123–1130 (2014). https://doi.org/10.1016/j.optmat.2014.02.012

    Article  CAS  Google Scholar 

  15. Samanta, P.K., Basak, S.: Electrochemical growth of hexagonal ZnO pyramids and their optical property. Mater. Lett. 83, 97–99 (2012). https://doi.org/10.1016/j.matlet.2012.05.133

    Article  CAS  Google Scholar 

  16. Jagadish, C., Pearton, S.: Zinc Oxide Bulk, 1st ed., Thin Films Nanostructures, Elsevier (2006)

    Google Scholar 

  17. Tian, Y., Lu, H.B., Li, J.C., Wu, Y., Fu, Q.: Synthesis, characterization and photoluminescence properties of ZnO hexagonal pyramids by the thermal evaporation method Physi. E 43, 410–414 (2010). https://doi.org/10.1016/j.physe.2010.08.024

    Article  CAS  Google Scholar 

  18. Bedia, A., Bedia, F.Z., Aillerie, M., Maloufi, N.: Structural, electrical and optical properties of Al–Sn codoped ZnO transparent conducting layer deposited by spray pyrolysis technique. Superlattice. Microstruct. 111, 714–721 (2017). https://doi.org/10.1016/j.spmi.2017.07.031

    Article  CAS  Google Scholar 

  19. Janisch, R., Gopal, P., Spaldin, N.A.: Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter 17, R657–R689 (2005). https://doi.org/10.1088/0953-8984/17/27/R01

    Article  CAS  Google Scholar 

  20. Paraguay, F., Miki-Yoshida, D.M., Morales, J.: Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. J. Solis, W. Estrada L., Thin Solid Films 73, 137 (2000). https://doi.org/10.1016/S0040-6090(00)01120-2

    Article  CAS  Google Scholar 

  21. Han, N., Wu, X., Zhang, D., Shen, G., Liu, H., Shen, Y.: CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens. Act. B: Chem. 152, 324–329 (2011). https://doi.org/10.1016/j.snb.2010.12.029

    Article  CAS  Google Scholar 

  22. Farag, A.A.M., Cavas, M., Yakuphanoglu, F., Amanullah, F.M.: Photoluminescence and optical properties of nanostructure Ni doped ZnO thin films prepared by sol–gel spin coating technique. J. Alloys Comp. 509, 7900–7908 (2011). https://doi.org/10.1016/j.jallcom.2011.05.009

    Article  CAS  Google Scholar 

  23. Mhamdi, A., Boukhachem, A., Madani, M., Lachheb, H., Boubaker, K., Amlouk, A., Amlouk, M.: Study of vanadium doping effects on structural, opto-thermal and optical properties of sprayed ZnO semiconductor layers. Optik 124, 3764–3770 (2013). https://doi.org/10.1016/j.ijleo.2012.11.074

    Article  CAS  Google Scholar 

  24. Boukhachem, A., Ouni, B., Karyaoui, M., Madani, A., Chtourou, R., Amlouk, M.: Structural, opto-thermal and electrical properties of ZnO: Mo sprayed thin films. Mater. Sci. Semicond. Process. 15, 282–292 (2012). https://doi.org/10.1016/j.mssp.2012.02.014

    Article  CAS  Google Scholar 

  25. Ilican, S., Caglar, Y., Caglar, M., Yakuphanoglu, F.: Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol–gel process Appl. Surf. Sci. 255, 2353–2359 (2008). https://doi.org/10.1016/j.apsusc.2008.07.111

    Article  CAS  Google Scholar 

  26. Caglar, M., Yakuphanoglu, F.: Structural and optical properties of copper doped ZnO films derived by sol–gel. Appl. Surf. Sci. 258, 3039–3044 (2012). https://doi.org/10.1016/j.apsusc.2011.11.033

    Article  CAS  Google Scholar 

  27. Bedia, F.Z., Bedia, A., Maloufi, N., Aillerie, M., Genty, F., Benyoucef, B.: Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J. Alloys Compd. 616, 312–318 (2014). https://doi.org/10.1016/j.jallcom.2014.07.086

    Article  CAS  Google Scholar 

  28. Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  29. Hielscher, R., Schaeben, H.: A novel pole figure inversion method: specification of the MTEX algorithm. J. Appl. Cryst. 41, 1024–1037 (2008). https://doi.org/10.1107/S0021889808030112

    Article  CAS  Google Scholar 

  30. JCPDS Card No. 36–1451 (ZnO hexagonal)

    Google Scholar 

  31. Rao, T.P., Santhoshkumar, M.C., Safarulla, A., Ganesan, V., Barman, S.R., Sanjeeviraja, C.: Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Phys. B 405, 2226 (2010). https://doi.org/10.1016/j.physb.2010.02.016

    Article  CAS  Google Scholar 

  32. Singhal, S., Kaur, J., Namgyal, T., Sharma, R.: Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Phys. B 407, 1223–1226 (2012). https://doi.org/10.1016/j.physb.2012.01.103

    Article  CAS  Google Scholar 

  33. Ilican, S., Caglar, M., Caglar, Y.: Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films. Appl. Surf. Sci. 256, 7204–7210 (2010). https://doi.org/10.1016/j.apsusc.2010.05.052

    Article  CAS  Google Scholar 

  34. Yoo, R., Cho, S., Song, M.J., Lee, W.: Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent stimulant. Sens. Actuat. B 221, 217–223 (2015). https://doi.org/10.1016/j.snb.2015.06.076

    Article  CAS  Google Scholar 

  35. Ma, L., Ma, S., Chen, H., Ai, X., Huang, X.: Microstructures and optical properties of Cu-doped ZnO films prepared by radiofrequency reactive magnetron sputtering. Appl. Surf. Sci. 257, 10036–10041 (2011). https://doi.org/10.1016/j.apsusc.2011.06.134

    Article  CAS  Google Scholar 

  36. Swapna, R., Santhosh Kumar, M.C.: Growth and characterization of molybdenum doped ZnO thin films by spray pyrolysis. J. Phys. Chem. Solids 74, 418–425 (2013). https://doi.org/10.1016/j.jpcs.2012.11.003

    Article  CAS  Google Scholar 

  37. Djelloul, A., Aida, M.S., Bougdira, J.: Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. J. Lumin. 130, 2113–211721 (2010). https://doi.org/10.1016/j.jlumin.2010.06.002

    Article  CAS  Google Scholar 

  38. Segmuller, A., Murakami, M.: In: Tu, K.N., Rosenberg, R. (eds.) Analytical Techniques Thin Films, p. 143. Academic, Boston (1988)

    Google Scholar 

  39. Bahedi, K., Addoua, M., El Jouada, M., Sofiania, Z., EL Oauzzanib, H., Sahraouib, B.: Influence of strain/stress on the nonlinear-optical properties of sprayed deposited ZnO: Al thin films. Appl. Surf. Sci. 257, 8003–8005 (2011). https://doi.org/10.1016/j.apsusc.2011.04.072

    Article  CAS  Google Scholar 

  40. Pankove, J.I.: Optical processes in semiconductors. Prentice-Hall Inc., Englewood Cliffs, NJ (1971)

    Google Scholar 

  41. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  42. Urbach, F.: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bedia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bedia, F.Z., Bedia, A., Maloufi, N., Aillerie, M. (2020). Doped ZnO Thin Films Properties/Spray Pyrolysis Technique. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_6

Download citation

Publish with us

Policies and ethics