Skip to main content
Log in

The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb0.8Ba0.2ZrO3 (PBZ) nanofibers were prepared through electrospinning and mixed at a volume composite ratio of 0–6% with polyvinylidene fluoride (PVDF) dissolved in an organic solvent, and the PBZ/PVDF composite film was prepared through casting. The nanocomposites with PBZ nanofibers of 3 vol% showed the best ferroelectric performance in this work, and the maximum polarization value and breakdown field strength were 9.69 μC/cm2 and 420 MV/m, respectively. The dielectric constant and dielectric loss at a depolarization temperature of 285 K were 6.13 and 0.21, respectively. The performance of the electrocaloric effect was studied using the direct method near room temperature. Under 150 MV/m and − 30 °C, the △T and ΔS of the composite film were 13.99 K and 52.70 J/kg K, respectively. When the temperature increased to 70 °C, △T and ΔS become 5.08 K and 13.56 J/kg K, respectively. The simulation results and experiments indicate that the incorporation of nanofibers can increase the interface polarization with higher polarization value and improve the ferroelectric performance than pure PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.Y. Jiang, X.C. Zheng, G.P. Zheng, RSC Adv. 5, 61946–61954 (2015)

    Article  CAS  Google Scholar 

  2. Z.Y. Jiang, G.P. Zheng, X.C. Zheng, H. Wang, Polymers 9, 315 (2017)

    Article  Google Scholar 

  3. Y. Qiu, H. Wu, J. Wang, J. Lou, Z. Zhang, A. Liu, T. Kitamura, G. Chai, J. Appl. Phys. 122, (2017)

    Article  Google Scholar 

  4. B. Lu, Y. Yao, X. Jian, T. Tao, B. Liang, Q.M. Zhang, S.G. Lu, J. Eur. Ceram. Soc. 39, 1093–1102 (2019)

    Article  CAS  Google Scholar 

  5. X.D. Jian, B. Lu, D.D. Li, Y.B. Yao, T. Tao, B. Liang, X.W. Lin, J.H. Guo, Y.J. Zeng, S.G. Lu, A.C.S. Appl, Mater. Interfaces 11, 20167–20173 (2019)

    Article  CAS  Google Scholar 

  6. T. Jamwal, R. Kumar, S. Singh, Ceram. Int. 00, 1–7 (2019)

    Google Scholar 

  7. F. Li, B. Lu, J. Zhai, B. Shen, H. Zeng, S. Lu, G. Viola, H. Yan, J. Am. Ceram. Soc. 101, 5503–5513 (2018)

    Article  CAS  Google Scholar 

  8. X. Zhang, Y. Shen, Z. Shen, J. Jiang, L. Chen, C.W. Nan, ACS Appl. Mater. Interfaces. 8, 27236 (2016)

    Article  CAS  Google Scholar 

  9. Z.D. Wang, M.M. Yang, Y.H. Cheng, J.Y. Liu, B. Xiao, S.Y. Chen, J.L. Huang, Q. Xie, G.L. Wu, H.J. Wu, Compos. Part A Appl. Sci. 118, 302–311 (2019)

    Article  CAS  Google Scholar 

  10. C. Pan, K.C. Kou, Y. Zhang, Z.Y. Li, G.L. Wu, Compos. Part. B Eng. 153, 1–8 (2018)

    Article  CAS  Google Scholar 

  11. I.J. Roh, B. Kwon, S.H. Baek, S.K. Kim, J.S. Kim, C.Y. Kang, J. Electron. Mater. 45, 1057–1064 (2015)

    Article  Google Scholar 

  12. B.L. Peng, H.Q. Fan, Q. Zhang, Adv. Funct. Mater. 23, 2987–2992 (2013)

    Article  CAS  Google Scholar 

  13. Y. Liu, A. Haibibu, W. Xu, Z. Han, Q. Wang, Adv. Funct. Mater. 2000648, 1–8 (2020)

    Google Scholar 

  14. Z. Hanani, D. Mezzane, M. Amjoud, A.G. Razumnaya, S. Fourcade, Y. Gagou, K. Hoummada, M.E. Marssi, M. Gouné, J. Mater. Sci.: Mater. Electron. 30, 6430–6438 (2019)

    CAS  Google Scholar 

  15. X.S. Qian, H.J. Ye, Y.T. Zhang, H.M. Gu, X.Y. Li, C.A. Randall, Q.M. Zhang, Adv. Funct. Mater. 24, 1300–1305 (2014)

    Article  CAS  Google Scholar 

  16. B.C. Bret Neese, S.G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Science 321, 821–823 (2008)

    Article  Google Scholar 

  17. J.F. Scott, Annu. Rev. Mater. Res. 41, 229–240 (2011)

    Article  CAS  Google Scholar 

  18. X.S. Zhang, G.Z. Zhang, T.N. Yang, Q. Li, L.Q. Chen, S.L. Jiang, Q. Wang, ACS Nano 9, 7164–7174 (2015)

    Article  CAS  Google Scholar 

  19. J. Wang, Q. Li, Y. Ma, G. Liu, Y. Zhao, H. Fan, Appl. Phys. A 122, 517 (2016)

    Article  Google Scholar 

  20. Y. Liu, J.F. Scott, B. Dkhil, Appl. Phys. Rev. 3, (2016)

    Article  Google Scholar 

  21. M. Valant, Prog. Mater Sci. 57, 980–1009 (2012)

    Article  CAS  Google Scholar 

  22. C. Pan, K.C. Kou, Q. Jia, Y. Zhang, G.L. Wu, T.Z. Ji, Compos. Part B Eng. 111, 83–90 (2017)

    Article  CAS  Google Scholar 

  23. C. Pan, J.Q. Zhang, K.C. Kou, Y. Zhang, G.L. Wu, Int. J. Heat Mass Transf. 120, 1–8 (2018)

    Article  CAS  Google Scholar 

  24. Q. Li, G.Z. Zhang, X. Zhang, S. Jiang, Y. Zeng, Q. Wang, Adv. Mater. 27, 2236–2241 (2015)

    Article  CAS  Google Scholar 

  25. H. Aziguli, X. Chen, Y. Liu, G. Yang, P. Yu, Q. Wang, Appl. Phys. Lett. 112, (2018)

    Article  Google Scholar 

  26. J.F. Qian, R.C. Peng, Z.H. Shen, J.Y. Jiang, F. Xue, T.N. Yang, L.Q. Chen, Y. Shen, Adv. Mater. 31, 1801949 (2019)

    Google Scholar 

  27. G.Z. Zhang, Q. Li, H.M. Gu, S.L. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q.M. Zhang, Q. Wang, Adv. Mater. 27, 1450–1454 (2015)

    Article  CAS  Google Scholar 

  28. S. Uddin, G.P. Zheng, Z.Y. Jiang, Solid State Sci. 90, 9–13 (2019)

    Article  CAS  Google Scholar 

  29. G.Z. Zhang, B.Y. Fan, P. Zhao, Z.Y. Hu, Y. Liu, F.H. Liu, S.L. Jiang, S.L. Zhang, H.L. Li, Q. Wang, ACS Appl. Energy Mater. 1, 1344 (2018)

    Article  CAS  Google Scholar 

  30. X.F. Li, G.Z. Jiang, Y. Qian, W.N. Xu, W.B. Liu, Aquaculture 416–417, 23–32 (2013)

    Article  Google Scholar 

  31. X.H. Hao, J.W. Zhai, J. Zhou, Z.X. Yue, J.C. Yang, W.G. Zhao, S.L. An, J. Alloys Compd. 509, 271–275 (2011)

    Article  CAS  Google Scholar 

  32. H. Fujishita, Y. Ishikawa, S. Tanaka, A. Ogawaguchi, S. Katano, J. Phys. Soc. Jpn. 72, 1426–1435 (2003)

    Article  CAS  Google Scholar 

  33. S. Teslic, T. Egami, Acta Cryst. B54, 750–765 (1998)

    Article  CAS  Google Scholar 

  34. W. Tangkawsakul, A. Laowanidwatana, T. Bongkarn, Ferroelectrics 403, 196–203 (2010)

    Article  CAS  Google Scholar 

  35. N. Vittayakorn, T. Bongkarn, G. Rujijanagul, Phys. B 387, 415–420 (2007)

    Article  CAS  Google Scholar 

  36. T. Bongkarn, G. Rujijanagul, Curr. Appl. Phys. 6, 319–322 (2006)

    Article  Google Scholar 

  37. T. Bongkarn, G. Rujijanagul, S.J. Milne, Mater. Lett. 59, 1200–1205 (2005)

    Article  CAS  Google Scholar 

  38. B.P. Pokharel, D. Pandey, J. Appl. Phys. 90, 2985–2994 (2001)

    Article  CAS  Google Scholar 

  39. K.H. Yoon, S.C. Hwang, J. Mater. Sci. 32, 17–21 (1997)

    Article  CAS  Google Scholar 

  40. M.H. Wu, J.M. Wu, Appl. Phys. Lett. 86, (2005)

    Article  Google Scholar 

  41. Y.H. Kim, Y.J. Heo, W.G. Koh, G. Shin, K.H. Choi, J. Mater. Sci.: Mater. Electron. 32, 3402–3414 (2021)

    CAS  Google Scholar 

  42. K.R. Kishore, D. Balamurugan, B.G. Jeyaprakash, J. Mater. Sci.: Mater. Electron. 32, 1204–1220 (2021)

    Google Scholar 

  43. G. Kugel, S. Lahlou, J. Handerek, Z. Ujma, K. Wojcik, K. Roleder, M.D. Fontana, C. Carabatos-Nedelec, Ferroelectrics 107, 103–108 (1990)

    Article  CAS  Google Scholar 

  44. Z. Ujma, J. Hańderek, M. Pawełczyk, D. Dmytrów, Ferroelectrics 129, 127–139 (1992)

    Article  CAS  Google Scholar 

  45. T. Sa, N. Qin, G.W. Yang, D.H. Bao, Appl. Phys. Lett. 102, (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC No. 51672130), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-0518K01), the Key Research and Development Program of Jiangsu Province (Grant No. BE2018008-2), and the Fundamental Research Funds for the Central Universities (No. NP2020101 and NS2020007), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kongjun Zhu or Weiqing Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, G., Zhu, K., Li, X. et al. The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature. J Mater Sci: Mater Electron 32, 12001–12016 (2021). https://doi.org/10.1007/s10854-021-05831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05831-8

Navigation