Skip to main content

Advertisement

Log in

Fabrication of TiO2/CdS heterostructure photoanodes and optimization of light scattering to improve the photovoltaic performance of dye-sensitized solar cells (DSSCs)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Currently, the TiO2/CdS photoanodes based dye-sensitized solar cells (DSSCs) have shown extraordinary developments in the photo-conversion efficiency. In this report, pristine TiO2, CdS and various molar ratios of TiO2/CdS photoanodes were prepared by one step microwave irradiation route and followed by doctor blade method. The sheet-like morphology of the TiO2 and CdS nanoparticles were clearly evident from the SEM and TEM images. A significant reduction bandgap with enhanced light absorption and rapid prevention of electron hole pair was explored by UV-DRS and PL studies. The photocurrent density–voltage (J–V) and electrochemical impedance (EIS) characteristics were analyzed for assembled solar cell. The photo-conversion efficiency of 12.8% was obtained with the configuration TiO2/CdS (200 mg) that represent a 2.5-fold increment compared to bare TiO2 (5.33%) as well as commercial Pt (6.11%). The experimental results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)

    Article  CAS  Google Scholar 

  2. R.S. Selinsky, Q. Ding, M.S. Faber, J.C. Wright, S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 42, 2963–2985 (2013)

    Article  CAS  Google Scholar 

  3. K. Kalyanasundaram, M. Gratzel, Themed issue: nanomaterials for energy conversion and storage. J. Mater. Chem. 22, 24190–24194 (2012)

    Article  CAS  Google Scholar 

  4. B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90, 549–573 (2006)

    Article  CAS  Google Scholar 

  5. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  CAS  Google Scholar 

  6. T.X. Ding, J.H. Olshansky, S.R. Leone, A. Paul Alivisatos, Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 137, 2021–2029 (2015)

    Article  CAS  Google Scholar 

  7. I. Ka, B. Gonfa, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation based synthesis of PbS-quantum dot-decorated one-dimensional nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells. Adv. Funct. Mater. 24, 4042–4050 (2014)

    Article  CAS  Google Scholar 

  8. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  9. M. Gratzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  CAS  Google Scholar 

  10. M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol., A 164, 3–14 (2004)

    Article  CAS  Google Scholar 

  11. P.E. De Jongh, D. Vanmaekelbergh, Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles. Phys. Rev. Lett. 77, 3427–3430 (1996)

    Article  Google Scholar 

  12. G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, Band Edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B 101, 8141–8155 (1997)

    Article  Google Scholar 

  13. T. Bessho, E. Yoneda, J.H. Yum, M. Guglielmi, L. Tavernelli, H. Lmai, U. Roth-lisberger, M.K. Nazeeruddin, M. Grä̈tzel, New paradigm in molecular engineering of sensitizers for solar cell applications. J. Am. Chem. Soc. 131, 5930–5934 (2009)

    Article  CAS  Google Scholar 

  14. P.G. Bomben, K.C.D. Robson, P.A. Sedach, C.P. Berlinguette, On the viability of cyclometalated Ru (II) complexes for light-harvesting applications. Inorg. Chem. 48, 9631–9643 (2009)

    Article  CAS  Google Scholar 

  15. P.G. Johansson, J.G. Rowley, A. Taheri, G.J. Meyer, S.P. Singh, A. Islam, L. Han, Long wavelength sensitization of TiO2 by Ru Diimine compounds with Low-Lying π* orbitals. Langmuir 27, 14522–14531 (2011)

    Article  CAS  Google Scholar 

  16. H.C. Zhao, J.P. Harney, Y.T. Huang, J.H. Yum, M.K. Nazeeruddin, M. Gratzel, M.K. Tsai, Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells J. Rochford. Inorg. Chem. 51, 1–3 (2012)

    Article  CAS  Google Scholar 

  17. H. Jia, H. Xu, Y. Hu, Y. Tang, L. Zhang, TiO2@CdS core–shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties. Electrochem. Commun. 9, 354–360 (2007)

    Article  CAS  Google Scholar 

  18. H. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater. Chem. Phys. 83, 66–70 (2004)

    Article  CAS  Google Scholar 

  19. H.H. Ali, M.R. Al-Bahrani, Synthesis of TiO2/Graphene Quantum Dots as Photoanode to Enhance Power Conversion Efficiency for Dye-Sensitized Solar Cells. Int. J. Adv. Sci. Technol. 29(3), 11071–11081 (2020)

    Google Scholar 

  20. V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani, TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem. Phys. 339, 111–123 (2007)

    Article  CAS  Google Scholar 

  21. J.C. Tristão, F. Magalhães, P. Corio, M.T.C. Sansiviero, Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J. Photochem. Photobiol., A 181, 152–157 (2006)

    Article  Google Scholar 

  22. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave assisted synthesis of pure and Ag doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Cluster Sci. 30, 351–363 (2019)

    Article  CAS  Google Scholar 

  23. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    Article  CAS  Google Scholar 

  24. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum. 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  25. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  26. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Design and fabrication of hierarchical heterostructure CuCo2O4@PPy based asymmetric device with ultra high capacitance and attractive cycling performance. Mater. Res. Bull. 126, 110817 (2020)

    Article  CAS  Google Scholar 

  27. R. BoopathiRaja, M. Parthibavarman, Desert rose like heterostructure of NiCo2O4/NF@ PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application. Electrochimica Acta 346, 136270 (2020)

    Article  CAS  Google Scholar 

  28. S. Biswas, M.F. Hossain, T. Takahashi, Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films 517, 1284–1288 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pricilla jeyakumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi, M., jeyakumari, A.P. Fabrication of TiO2/CdS heterostructure photoanodes and optimization of light scattering to improve the photovoltaic performance of dye-sensitized solar cells (DSSCs). J Mater Sci: Mater Electron 32, 11921–11930 (2021). https://doi.org/10.1007/s10854-021-05822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05822-9

Navigation